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and temperature development, require a very large number of time-aware gate-level logic simulations. Until
now, such characterizations have been feasible only for rather small designs or with reduced precision due
to the high computational demands.

The new simulation system presented here is able to accelerate such tasks by more than two orders of
magnitude and provides for the first time fast and comprehensive timing simulations for industrial-sized
designs. Hazards, pulse-filtering, and pin-to-pin delay are supported for the first time in a GPGPU accel-
erated simulator, and the system can easily be extended to even more realistic delay models and further
applications.
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1. INTRODUCTION

Many EDA tasks involve a massive amount of independent simulations to collect var-
ious statistics on the behavior of the circuit. For instance, an efficient way to deter-
mine the data dependent power consumption of large synchronous sequential circuits
is to perform a complete time simulation and compute the weighted switching activ-
ity (WSA) [Najm 1994; Macii et al. 1997; Wang and Roy 1998] based on all the events
observed on internal signals. Tasks like fault simulation, variation analysis, or aging
analysis have very similar requirements and can be greatly accelerated by a high-
throughput simulator. Other design verification tasks may require simulation of a sin-
gle state for a large number of consecutive clock cycles. Such tasks clearly require
low-latency simulators and are not the target applications of this work.
Tremendous speedups are gained by using data-parallel architectures like general pur-
pose computing on graphics processing units (GPGPU) [Owens et al. 2008; Nvidia 2013]
for problems in electronic design automation [Catanzaro et al. 2008; Croix and Khatri
2009]. Especially, simulation tasks are of particular interest because of their high com-
putational demand and GPGPU implementations were proposed for gate-level logic
simulation [Chatterjee et al. 2011], fault simulation [Kochte et al. 2010; Li and Hsiao
2010; Li et al. 2010; Gulati and Khatri 2010], or Monte-Carlo simulations for statistical
static timing analysis [Gulati and Khatri 2009]. All these GPGPU gate level simula-
tors either do not consider timing at all (zero delay model) or only calculate the latest
transition at each gate [Gulati and Khatri 2009]. This is not sufficient for the tasks
mentioned above, as hazards may account for up to 70% of dynamic power [Shen et al.
1992] or may affect the fault coverage of a test set [Reddy et al. 1984; Lin and Reddy
1987].
The canonical way to analyze a circuit with all its hazards is to employ event-based
simulation. To increase simulation performance, event-based simulators exploit struc-
tural parallelism by distributing circuit partitions to multiple processors within a ma-
chine or even among multiple machines within a network [Chandy and Misra 1981;
Soule and Gupta 1989]. Frequent synchronizations are necessary between the parti-
tions, and these are implemented via shared memory or message passing [Mueller-
Thuns et al. 1993; Bailey et al. 1994]. To partly circumvent the latency introduced
by the synchronizations, lookahead-rollback mechanisms [Jefferson 1985; Meraji and
Tropper 2012] are used, which speculatively simulate individual partitions ahead of
time and then rollback if unexpected events are arriving. The message passing par-
allelization style is very ineffective on GPGPUs and their single instruction, multiple
data (SIMD) paradigm for parallelism. Moreover, to the best of our knowledge, all
parallelization strategies and optimizations proposed for event-based simulation aim
to increase the simulation performance for individual simulation instances (i.e. opti-
mization for low latency). Our goal is to optimize simulation throughput. Of course,
this could be achieved by running many independent event-based simulators at the
same time on a large computing cluster, but our experiments will show, that many
hundreds of computing nodes would be necessary to reach the same performance a
single GPGPU can deliver.
We present a novel gate-level time simulator for GPGPUs, which takes a combinational
time-annotated circuit and calculates for each set of input transitions all events on the
internal signals and outputs. The simulator combines for the first time the versatil-
ity of event-based timing simulation and multi-dimensional parallelism for maximum
speedup. Specialized versions of this simulator have already been used successfully for
variation analysis [Czutro et al. 2012; Sauer et al. 2014] and power simulation [Holst
et al. 2012]. Multi-dimensional parallelism has been used very successfully to speed up
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logic simulation. This new simulator applies this parallelism concept for the first time
to logic timing simulation on GPGPUs. It does so by packaging complete transition his-
tories into waveforms for very efficient data-parallel processing on GPGPUs. Similar
data structures have been used to speed up serial timing simulation [Min et al. 1996; Li
et al. 2000] or small-delay fault simulation [Czutro et al. 2008]. This article presents a
very efficient data-parallel waveform processing algorithm along with efficient meth-
ods to represent and organize large sets of waveforms in limited memory space. By
using waveforms as the basic representation of signal values in time, the simulator
avoids dealing with single events on a signal individually. The output waveform of a
gate is calculated from its input waveforms in a single processing step without any
further data dependencies or synchronization overhead. This allows the computation
of all events on all signals with only one single pass over the circuit and enables the
exploitation of two dimensions of parallelism, stimuli-parallelism and gate-parallelism
(see Figure 1). Even more dimensions can be added depending on the applications (e.g.
faults for fault simulation, Monte-Carlo samples for variation analysis).

... ...

...

......

...

...
..
.

..
.

..
.g
a
te
-p
a
ra
lle
lis
m

st
im
ul
i-

pa
ra
lle
lis
m

Fig. 1. The waveform principle enabling two dimensions of parallelism.

Stimuli-parallelism is exploited by processing s independent input stimuli at the same
time. In this simulator, an input stimulus is a waveform at every primary and pseudo-
primary input of the circuit. The waveforms at the (pseudo-)primary inputs usually
contain only single transitions to model the switch between two input patterns or a
state transition in the circuit. In combinational fault simulation or many other prob-
lems of structural test, all input stimuli are already known in advance and can be
given directly to the timing simulator for parallel processing.
Gate-parallelism is the parallel evaluation of g independent gates within a single sim-
ulation instance [Chatterjee et al. 2011]. In its simplest form, the gates within the
circuit are ordered topologically, and the resulting levels define the sets of pairwise in-
dependent gates. Figure 1 shows one level in such a topological ordering. The gates on
a level may be of various types and exhibit different timing behavior. This information
is stored as parameters for each individual instance and the simulator will process all
gates in a data-parallel fashion regardless of their differences. Therefore, the amount
of gates being processed in parallel only depends on the circuit topology and is not
constrained by the number of cell types and sizes in the technology library.
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Only the combination of these two dimensions generates enough (s · g) threads to fully
occupy typical GPGPUs for a wide range of design sizes. Small circuits with low mem-
ory requirement per instance allow for more input stimuli s to be processed in parallel.
For larger circuits with higher memory requirement, the number of simulations s is
reduced, but each level contains more gates and gate-parallelism dominates. Overall,
a large number of threads can be created over a wide range of circuit sizes, and the
number of threads is only bound by the memory available for waveforms.
The next section briefly describes the execution model of typical GPGPU architectures
in order to provide the necessary background for understanding the design decisions
made for the presented algorithm. Section 3 describes the waveform data structure, its
representation in memory, and the supported delay model along with its challenges for
an efficient GPGPU implementation. The GPGPU time simulation core, which pro-
cesses a set of independent gates with many stimuli in a data-parallel fashion, is
described in section 4. For the sake of maximum performance, the GPGPU simula-
tion core itself provides only very rudimentary controls. Design preprocessing, memory
management as well as the proper control for simulating complete combinational net-
works is done by the system CPU. This part is described in section 5 and completes the
time simulation system for combinational circuits. The series of experiments reported
in section 6 shows the performance benefit of the new simulator.

2. GPGPU EXECUTION MODEL

GPGPUs are throughput oriented architectures. Instead of reducing latencies with
techniques like out-of-order execution, speculative computing and complex control
hardware, GPGPU architectures use a massive amount of lightweight threads to
hide latencies caused by data dependencies and memory accesses. Thousands of these
threads are necessary to fully occupy such an architecture. Each thread executes the
same code, but operates on different data. Threads are scheduled in batches causing
multiple units to execute the same code in a lock-step fashion. This is most efficient
if many threads follow exactly the same execution path. If the control flows of two
threads diverge as a result of a data dependent conditional branch, however, some ex-
ecution units may become idle and the performance degrades until the control flows of
the threads merge again. Only threads of the same batch can share data during execu-
tion over fast but small local memories. Information exchange between threads from
different batches is only possible with very expensive global synchronizations, which
should be avoided as much as possible.
The memory hierarchy of data-parallel architectures is kept very flat and the amount
of cache available per thread is very limited. Besides the high latencies for memory
reads partly hidden by the thread scheduler, this also exposes physical properties of
the connection between the GPGPU and the on-board memory. Every memory access
results in a transaction on a several bytes wide bus between the on-board memory and
the GPGPU. To use all bytes in a transaction, threads of the same batch must access
data in the same region at the same time.
The key challenges in designing a simulation system on GPGPUs are therefore:

— Control flow divergences lead to idle computing resources and should be minimized
as much as possible by avoiding branches or at least keep the computations within
branches as simple as possible.

— Global synchronizations involve very large overheads and must be reduced to a min-
imum.
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— Memory efficiency: The less memory is needed per simulation instance, the more in-
stances can be handled in parallel. To use all available computing power on a GPGPU,
thousands of instances must be available at any given time.

— Memory access patterns should be as regular as possible to fully utilize the available
memory bandwidth. Compared to the available computing power, memory bandwidth
of GPGPUs is already quite limited and a proper memory organization must be used
to reduce idle cycles to a minimum.

The time simulation system presented below addresses all these challenges.

3. MODELING OF WAVEFORMS AND DELAYS

As parallelism is bound by the on-board memory size M , the waveform representa-
tion must be very memory efficient. At the same time, the representation should allow
for fast processing with a simple control flow for efficient data-parallel execution. The
waveform representation and evaluation algorithm presented here is tuned towards
2-valued simulations for maximum efficiency. However, the principle evaluation ap-
proach is also applicable to multi-valued simulations and waveform representations
like in [Czutro et al. 2008].
Let vt be the signal value at time t. A waveform is a description of signal values vt
for all t ≥ 0. In 2-valued simulation, transitions are always alternating between rising
and falling on a single signal. Therefore, any signal value vt′ is determined by a known
value vt and the number of transitions between t and t′. In the representation used
here, the initial signal value is always zero (v−∞ = 0) by default. With this signal
value given, only the time points ti need to be stored:

w = (t0, t1, t2, ..., tc−1) with t0 ≤ t1 ≤ · · · ≤ tc−1

Figure 2 shows some waveforms and their representations. The time of the first tran-
sition (which is always rising) is t0, the time of the second transition is t1, and so on.
In other words, the initial value of a transition ti is just the parity π(i) = imod2 of its
index i. To encode an initial value of 1 on a signal, t0 is set to a large negative value,
denoted by the symbol −∞. A waveform is terminated by a large value (symbol ∞)
after the last valid transition time. The number of transitions that fit into a waveform
is bound by a waveform capacity c. If the initial value of a signal is 0, at most c − 1
transitions can be stored, if the initial value of a signal is 1, at most c − 2 transitions
can be stored.

a

b

a·b

a⊕b

1 2 3 4 5 60 t

( 2,∞,∞,∞ )

( 1,4,∞,∞ )

(-∞,3,5,∞ )

( 5,∞,∞,∞ )

c=4

 

Fig. 2. Waveforms and their representations. Rising, falling and inertial delays are 1t.

With all waveforms available at the inputs of a cell, the output waveform of the re-
spective element is calculated based on a two-valued pin-to-pin delay model. Figure
3 shows the elemental delay processing necessary for supporting this delay model for
cells and wire delays. The transitions in the n input waveforms are first shifted by the
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delay values δir (rising), δif (falling) assigned to each input i. With the newly gener-
ated waveforms as parameters, the Boolean function is evaluated at each point in time
generating an intermediate output waveform.
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Fig. 3. Elemental delay processing.

Generally, short pulses or hazards can be filtered at two places, the inputs or the out-
put of a cell. Pulse filtering at the inputs provides more flexibility such as distinct
thresholds for each input, pulse filtering at the output requires less computing power
because it has to be performed only once per cell. This delay model combines the ad-
vantages by implementing output pulse filtering for high performance and allowing at
the same time distinct thresholds for each input. Positive pulses of width less than δiip
and negative pulses less than δiin (with i being the input causing the later transition
of the pulse) are filtered from the intermediate waveform to obtain the final output
waveform. This model matches the behavior of pure input pulse filtering very well
in all important aspects. If the exact behavior of input pulse filtering must be imple-
mented, buffers can be added with the appropriate threshold values at each input of
the cell.
In addition to pulse filtering, there are more situations, which require the removal of
transitions from the output waveform and further complicate the evaluation process.
These situations are known as collisions and classified into two types (see Figure 4).
In a type-1 collision, the relative order of transitions changes due to different delays
at each input. The upper part of Figure 4 shows input waveforms each containing a
single falling transition at inputs 1 and 2 of a cell. The falling transition at input 2
arrives later than the falling transition at input 1. If input 1 has a larger delay than
input 2 (δ1f > δ2f ), the delayed transitions may have a different order in time. In this
example, the transition at input 2 must be processed before the transition at input 1
to obtain the correct intermediate output waveform.
A type-2 collision arises, when the width of an incoming pulse is less than the differ-
ence between rising and falling delays at an input. The second example in Figure 4
shows a positive pulse of width d arriving at time t. The rising transition gets moved
to time t+ δr, and the falling transition gets moved to time t+ d+ δf by the respective
delays at this input. If the difference between the rising and falling delays is larger
than the pulse width (δr − δf > d), the order of these pulses change (t+ δr > t+ d+ δf )
rendering both transitions invalid. From an electrical viewpoint, the input pulse is too
short to load the gate capacities and cause a switch of the gate. This situation has to
be detected as well to compute the correct result, which is constant 0 in this example.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 201x.



High-Throughput Logic Timing Simulation on GPGPUs 0:7

δ1
f

δ2
f

f(...)
type 1

collision

type 2
collision

δr, δf

t t + d

δr − δf > d

t + d + δf

t + δr

Fig. 4. The two possible collision types.

A GPGPU implementation demands for a rather simple control flow in order to reduce
diverging threads to a minimum and simple memory access patterns for using the
available bandwidth efficiently, and the waveform data structure is crucial for meet-
ing these demands. Instead of processing each input transition sequentially, having
access to all transitions at all the inputs during the evaluation is very beneficial for
resolving the mentioned collisions and implementing efficient pulse filtering without
any additional synchronization or rollback overhead. Implementing this delay model
and processing is still very challenging, because of the numerous situations that re-
quire data-dependent branches. Moreover, different waveforms may contain different
numbers of transitions and therefore require different amount of storage. Keeping the
memory access patterns regular even in this situation is also a key feature of the
method described below.

4. GPGPU TIME SIMULATION CORE

The principle operation of a single thread on the GPGPU is to compute the output
waveform at a single gate with given input waveforms. A single invocation of the sim-
ulation core will generate a two-dimensional array of threads which compute s·g wave-
forms for g mutually independent gates and s different input stimuli (Figure 1). Each
thread is spawned with different parameters for the gate and locations of its input
and output waveforms in memory for fully data-parallel operation. All s waveforms for
each signal form a waveset data structure described in the next subsection. After this,
the core evaluation algorithm is presented that efficiently operates on these wavesets.

4.1. Wavesets and Overflows

Multiple independent simulations with different input stimuli are performed at the
same time (stimuli-parallelism). Therefore, each internal signal needs storage for a set
of waveforms, called a waveset. To make the best possible use of memory transactions
for optimal on-board memory throughput, the s individual waveforms in a waveset are
stored in an interleaved manner. Each thread will read its waveform in the order of
increasing transition times (t0, t1, . . . ). Therefore, all t0 of the waveforms are stored
in direct succession in the waveset and the same holds for all the other transitions ti
(0 ≤ i < c). The resulting memory layout of a waveset is shown in Figure 5.
All waveforms in a waveset have the same capacity c. The actual number of transitions
for a signal is not known in advance and may exceed the waveform capacity for certain
signals and input stimuli. However, using variable-sized or dynamically growing data
structures for waveforms would again lead to irregular memory access patterns and a
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Fig. 5. Memory organization of a waveset with capacity c and s samples.

severe performance impact on the data-parallel code. Instead, the simulation core will
simply truncate the output waveform and flag the incomplete waveform by increasing
an overflow counter wov stored along the waveform itself. This overflow indication en-
ables the overall simulation system to increase the appropriate waveform capacities
and re-allocate the wavesets while fully data-parallel operation is maintained in the
inner simulation loops.

4.2. Waveform Evaluation

This algorithm computes the output for a gate with n inputs. It is designed to operate in
a data-parallel fashion on wavesets where each individual thread computes one of the s
waveforms in the output waveset. For the sake of easier discussion, first, the operation
of a single thread computing a single output waveform z from n input waveforms is
presented.
Given are the logic function of the gate f(v1, . . . , vn), the delays for a rising transi-
tion at each input δ1r , . . . , δnr , the delays for falling transitions δ1f , . . . , δ

n
f , the positive

and negative inertial delays δ1ip, . . . , δnip, δ1in, . . . , δnin, and the waveform at each input
w1, . . . , wn. The input waveforms are processed in the order of their representation
with a merge-sort approach. A transition is added to the output waveform, if (1) the
logic value of f changes with the currently processed input transition, and (2) the tran-
sition originating from an input k does not generate a positive pulse smaller than δkip or
a negative pulse smaller than δkin. The logic values for the evaluation of f are given by
the parities of the indices of the currently processed transitions. As already mentioned
previously, the signal value before a transition at ti in a waveform w = (t0, t1, . . . ) is
just vti−ε = π(i) for a sufficiently small ε > 0. If f changes its value indeed, two cases
are possible. In the case, that the new transition does not generate a short pulse, it is
saved in z and the index for the output waveform is advanced. In the case, that the new
transition is too close to the previously saved transition t′, it is discarded and t′ is re-
moved from z by decreasing the output waveform index by one. During this processing
it has to be ensured, that collisions of type 1 and type 2 are handled appropriately.
Algorithm 1 implements the computation of an output waveform directly from the in-
put waveforms with very low intermediate memory requirements and simple control
flow. The lines starting at 1 initialize the input waveform indices i1, . . . , in and the out-
put waveform index j. If at least one of the input waveforms w1, . . . , wn is incomplete
due to an overflow happened previously, the output waveform z might be incomplete
as well. Therefore, the output overflow indicator zov is initialized to the sum of the
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overflow field values of all inputs. If the function f evaluates to one for all zero inputs,
the output waveform is initialized with an initial value of one. The variables t1, . . . , tn
are initialized to the first transition in each input waveform plus the corresponding
delays. As in the waveform representation, the first entry is always a rising transition,
δkr is added for each input k.

ALGORITHM 1: Waveform evaluation in pseudo-code.
Data: Function of the cell: f(v1, . . . , vn), arrays containing rising and falling delays for each

input: δ1 = [δ1r , δ
1
f ], . . . , δ

n = [δnr , δ
n
f ], arrays containing inertial delays:

δ1i = [δ1in, δ
1
ip], . . . , δ

n
i = [δnin, δ

n
ip], waveforms at the cell’s inputs: w1, . . . , wn, overflow

indicators: w1
ov, . . . , w

n
ov

Result: Waveform at the cell’s output: z, overflow indicator: zov
1 i1, . . . , in ← 0
j ← 0
zov ←

∑n
x=1 w

x
ov

if f(0, . . . , 0) = 1 then
z0 ← −∞
j ← 1

end
tk ← wk

0 + δkr ∀ 1 ≤ k ≤ n

2 t← min{t1, . . . , tn}
while t <∞ and j < |z| do

choose k with tk = t
ik ← ik + 1

tk ← wk
ik

+ δk[π(ik)]
if f(π(i1), . . . , π(in)) 6= π(j) then

3 if j = 0 or tk < t or t− zj−1 > δki [π(j)] then
zj ← t
j ← j + 1

else
j ← j − 1

end
end
t← min{t1, . . . , tn}

end
4 if t <∞ then

zov ← zov + 1
end
zj ←∞

The part beginning at 2 contains a while-loop, that processes transitions until the
terminal symbol ∞ is reached for all the input waveforms or the output waveform
reached its capacity. The input transitions are processed in the order of their delayed
point in time and t stores this time for the current loop iteration. This resolves all
type-1 collisions as the order of the transitions is evaluated after the addition of the
input delays. However, type-2 collisions are not yet resolved at this point and cause t
to decrease at a certain point as the min-operator first selects the later of the two in-
valid transitions and then the earlier one. It is important to observe, that both invalid
transitions will always be processed in direct succession. If the min-operator selects
an invalid transition at time tk, by definition, there is no earlier transition currently
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under consideration. The loop-iteration will consume the transition at tk and put the
next invalid transition at t′k < tk under consideration. For the following iteration, the
min-operator will always select t′k. This observation allows the filtering of the two col-
lided transitions along with the pulse-filtering described below without any additional
branches.
The body of the while-loop first selects an earliest, unprocessed transition (there may
be more than one) and consumes it by advancing the appropriate index ik. The transi-
tion time tk is updated to the value, that will be selected in a later loop iteration. If the
logic function of the cell produces a value different from the current one π(j), a transi-
tion may be generated in z at time t. The if-statement at 3 implements three important
tasks. It handles the pulse-filtering condition, it prevents the storage of redundant −∞
symbols in the output waveform, and it removes invalid transitions from type-2 colli-
sions. If the output waveform is empty (j = 0), the transition is always stored. If the
next transition of input k is earlier than the current one (t), there is a type-2 collision
at input k and the current transition is invalid. However, this transition is also always
stored in the output waveform, which seems unreasonable at the first glance. But the
earlier one of the collided transitions (currently saved in tk) will be processed in the
next loop iteration and both transitions will then be filtered because t − zj−1 will be
negative. Moreover, as the current transition is invalid, it must not cause a filtering of
a transition from a different input. If there are transitions in the output waveform and
the current transition is not the later one involved in a type-2 collision, the difference
between the current transition t and the last one in z (zj−1) must be larger than the ap-
propriate value in δi for the current transition to be valid. When the output waveform
contains a −∞ symbol for an initial value of 1 (z0 = −∞) and a −∞ symbol from an
input changes the value of the gate, both symbols are discarded as well. The algorithm
exploits here the limited precision of floating point values in order to ensure this filter-
ing for any reasonable delay values δ and δi. The symbol −∞ is encoded with such a
large negative value, that any addition with a relatively small positive delay δ results
again in the same value −∞. Consequently, t − zj−1 will always be 0 in the situation
described above and both symbols are discarded even if pulse-filtering is not used in
this evaluation (δi = 0). New transitions are stored by updating z and increasing j.
If a transition is discarded, the previously stored transition is also removed from z by
decreasing j. The while-iteration ends with the selection of the next earliest transition
time from the input waveforms. Again, if the current iteration involved the later one
of two collided transitions (tk < t is true), the time tk will be selected next and the
appropriate transitions are filtered in the next iteration.
The if-statement at 4 after the while-loop checks for the overflow condition and in-
creases the overflow indicator zov if necessary. At the end, the terminal symbol ∞ is
added to z.
This algorithm is well suited for data-parallel execution in a lock-step fashion. Con-
trol flow divergences (if-statements) are reduced to the absolutely necessary and all
expensive operations (summing, min-operator and gate function evaluation) are un-
conditioned. The conditioned operations include only quite inexpensive floating-point
comparisons and index manipulations. In a batch of m threads, m loops are executed in
parallel and the batch is active until the while-loop in every thread is finished. Within
a batch, each thread will evaluate an individual gate instance (a gate type with its
unique timing) but with different stimuli. The other gate instances on the current
level are evaluated by separate batches. All batches are again pairwise independent
and are in turn executed in parallel.
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Each thread y of an m-sized batch first reads the overflow fields wx
ov,y (0 ≤ y < m)

of the input waveforms. Due to the memory organization of wavesets (Figure 5), all
threads access similar memory locations concurrently filling the generated transac-
tions perfectly. The same holds for the access to tx0,y, but during the loop iterations, the
individual threads may be forced to consume input transitions on different inputs and
the indices ik diverge in their values. Therefore, each thread may consume the transi-
tions in a waveset at a different pace. Transactions are filled as much as possible, but
not perfectly anymore. However, the cache available in recent GPGPU architectures
compensates nicely by holding the data of the last few transactions for the threads
with slower pace to read.

5. TIME SIMULATION SYSTEM

The time simulation system invokes the GPGPU simulation core repeatedly to imple-
ment high-throughput timing simulation for combinational logic circuits and ensures
correct results in the cases where the simulation core reports overflows. Figure 6 shows
the overall time simulation system with the control flow depicted in the vertical direc-
tion and data flowing from left to right. The white tasks in this figure are performed
entirely on the latency-optimized CPU and involve mostly design preprocessing and
memory management. The shaded tasks are are performed with the help of the data-
parallel simulation core described in the previous section and form the inner simula-
tion loops.

combinational network
extraction

topological ordering

load init. waveform capacities

waveform memory allocation

full-speed simulation

monitored simulation

increase waveform capacities

waveform memory allocation

overflows?

yes

no

netlist

waveform
capacities

input
waveforms

output
waveforms

waveform
capacities

Fig. 6. Overall combinational simulation flow.

For maximum possible performance, the system has to ensure that:

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 201x.



0:12 S. Holst et al.

— Each call to the simulation core contains the maximum amount of parallelism for
optimal GPGPU workload and minimum number of calls.

— The communication between GPGPU and CPU is minimized.

To maximize parallelism per invocation of the simulation core, the system needs to
determine large sets of independent gates and at the same time minimize the memory
footprint per stimulus. Reducing this memory footprint is equivalent to minimizing
the number of wavesets necessary for storing all intermediate results during a single
pass over the circuit and finding their optimal capacities.

5.1. Preprocessing and Topological Ordering

In a given gate-level design, first, all the state elements like flip-flops and latches are
replaced by pairs of pseudo-primary inputs and outputs. To reduce the number of syn-
chronizations to the minimum, the resulting cycle-free, purely combinational network
is ordered topologically using an as-soon-as-possible (ASAP) scheduling. The first level
contains all primary and pseudo-primary inputs, and the gates on the following levels
only depend on gates and inputs from previous levels. All gates in a single level are
pairwise independent and will be evaluated in parallel during simulation. As the num-
ber of necessary synchronizations equals the length of the longest structural path in
the circuit, the ASAP-schedule guarantees the maximum amount of gate-parallelism
for the given design.
This simple preprocessing is done in linear time and results in fixed design data trans-
ferred to the GPGPU just once. The design data contains the types and delay parame-
ters for each gate and the gates in the circuit are grouped by their topological level. It
is shared among all simulation instances (each processing their own input stimuli) and
therefore takes only very little memory compared to the wavesets. The following invo-
cations of the simulation core just takes the level number as parameter and processing
will start on the GPGPU using the available design data and without any further data
transfer.

5.2. Waveset Memory Management

The amount of data-parallelism is bound by the size of the on-board memory M . Let us
consider for now, that all wavesets have the same capacity c, and let r be the number of
storage spaces for intermediate signal wavesets necessary to complete one simulation
pass over the circuit. The number of independent simulations s that can be performed
in parallel is

s =
M

c · r .

The waveset capacities are already determined by the number of transitions on the
signals. Therefore, r has to be reduced to a minimum in order to maximize stimuli-
parallelism. Figure 7 shows an example of an allocation with r = 7. Wavesets that pass
a barrier indicated by a dashed line need to be stored in the on-board memory, and the
numbers denote their storage locations. Simple reference counting can be used to find
a minimum cost allocation with a single pass over the circuit, re-using each location
as soon as its intermediate result is no longer required.
However, wavesets may have different capacities and using only storage locations of
one common chunk size would be very inefficient. Moreover, capacities may change
to avoid overflows detected during simulation and efficient re-allocation should also
be possible. One way to tackle this issue is to allocate an additional chunk of memory
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Fig. 7. A possible waveset allocation for circuit c17 with ASAP-scheduling. Locations 1 and 3 are re-used in
the third barrier and locations 2 and 4 are re-used in the last one.

(page) whenever an overflows occurs [Zhu et al. 2011]. Because the memory for a single
waveset may get fragmented over several pages, additional bookkeeping and indirect
addressing is necessary. This overhead slows down execution even in cases when no
overflow takes place during simulations. To ensure maximum performance, the fol-
lowing approach ensures that the memory of a single waveset is always a continuous
chunk of memory and avoids additional bookkeeping and indirect addressing.
As described in the next section, the simulation system will double the waveset capaci-
ties if an overflow has occurred. The sizes of memory chunks are therefore proportional
to 2i · c′ with i ≥ 0 and c′ the base capacity before any simulation run. One very effi-
cient way to manage memory chunks of these sizes is a buddy system [Knowlton 1965;
Knuth 1969]. The allocated memory chunks are organized in a binary tree, and each
node in the binary tree corresponds to a specific location in the memory. The lowest
child nodes represent memory chunks of size c′, their parent nodes represent chunks
of size 2c′ and so on up to the root node, which represents all available memory. Figure
8 shows an example of such a tree.
The nodes in the tree may have either exactly two children or no children at all. Nodes
without children are called leafs. A leaf node may have a label indicating the piece of
data stored in the associated memory chunk. Leaf nodes without label indicate free
memory and can get assigned a piece of data by assigning the label, or get split into
smaller memory chunks by adding two children to this node.
A new memory chunk is allocated by looking up the next free leaf node on the level
corresponding to the desired chunk size. If no such node exists, new child nodes are
generated for a free leaf node of a bigger chunk size. For instance, a new waveset w4 of
size c′ would be associated with node a in Figure 8. For the next waveset w5 of the same
size, two children would be generated for leaf node b and the waveset would be associ-
ated with the first child. Deallocation is just the reverse operation. If w1 is not needed
anymore, for instance, its storage space is merged with its buddy (sibling node a) by
just removing these two nodes from the tree. With the proper management of available
leaf nodes in free-lists [Knowlton 1965], these operations can be implemented in near-
constant time (logarithmic time in the worst-case for the split and merge operations)
to allocate all wavesets for the circuit in near-linear time.
All wavesets are allocated level-by-level in a single pass over the circuit. For each
level, the binary tree is stored in order to serve as a basis for re-allocating wavesets
after a change in their capacities. This allocation method determines the amount of
memory m needed to perform simulation with a single set of input waveforms (i.e. the
memory requirement for s = 1). The amount of stimuli-parallelism is now determined
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Fig. 8. Example of a binary tree for waveset memory management. The waveset w1 was allocated with size
c′, w2 and w3 are both of size 2c′.

by choosing the largest possible s with M ≥ s ·m. While the memory requirement m
is different from design to design, the simulation system always uses all the available
memory resources to provide as much throughput as possible.

5.3. The Main Simulation Loops

Typically, more than s simulations have to be performed and multiple passes over
the circuit are required. One iteration of a simulation loop will first transfer s new
waveforms for each input to the GPGPU, propagate the waveforms with a single pass
over the circuit by invoking the simulation core for each topological level, and then
collect the results.
The simulation system uses two simulation loops that are different in their overflow
detection and location granularity. In full-speed simulation (the inner loop in Figure 6),
overflows are just recorded in each waveform by the simulation core and propagated
together with the waveform information towards the outputs at negligible additional
cost. At the end of a simulation pass over the complete circuit, reduction is performed
over all output waveforms resulting in the sum of overflows happened during simu-
lation. Zero overflows indicates a completely valid simulation run, consistent output
waveforms and statistics. A positive number of overflows indicates, that some tran-
sitions were skipped somewhere in the circuit. If this situation is detected after pro-
cessing a set of inputs, the simulator will enter a calibration loop (the outer loop in
Figure 6). This calibration loop processes the same set of inputs again level by level in
a monitored simulation. After the evaluation of all gates in a level, all newly generated
wavesets are checked for overflows individually. If an overflow is detected in a waveset
on level l, its capacity is doubled, the wavesets of this level are newly allocated on the
basis of the buddy tree of level l − 1, and then the same level is simulated again. This
procedure is repeated until all overflows on level l are resolved. The current calibra-
tion run then continues with the remaining levels > l, which are re-allocated as well
resolving all overflows resulting from the additional transitions propagated through
the circuit.
After a calibration loop, some waveset capacities have been adjusted to guarantee cor-
rect and complete results at all internal signals and outputs. The next set of inputs
is again simulated with the full-speed simulation loop, which avoids all fine-grained
overflow monitoring and memory re-organizations to reach maximum simulation per-
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formance. In typical designs, only very few signals show large numbers of hazards.
After the first few calibration loops, overflows become relatively rare and the simula-
tion system is able to stay in the high performance full-speed simulation loop for most
of the passes. This is even true in variation analysis where gate timing is slightly al-
tered between simulations [Czutro et al. 2012; Sauer et al. 2014], because the efficient
collision detection and glitch filtering still limits the number of hazards on a signal.
The waveform capacities are stored to disk and reloaded in subsequent simulations
of the same design (Step three in Figure 6) to initialize the capacities and avoid most
calibrations altogether.

6. EXPERIMENTAL RESULTS

The simulation algorithm has been implemented on CUDATM-enabled hardware from
NVIDIA R© [Nvidia 2013]. This hardware provides high performance for single precision
floating point operations, therefore 32-bit floating point numbers are used for the tran-
sition times in the waveforms. The host system for the simulation experiments con-
tains Intel R© Xeon R© processors with 2.8 GHz and 256 GB RAM. The CUDATM-device is
a Kepler GPU clocked with 980 MHz and 6 GB of on-board memory.

6.1. Benchmark Circuits and Delay Annotation

The experiments were performed on the largest ITC’99 benchmark circuits and indus-
trial designs provided by NXP. All benchmarks were mapped to the NanGate Open
Cell Library [OCL 2011] using primitive gates with at most two inputs by a commer-
cial synthesis tool. This tool provides also timing estimates for all gates and wires in
the Standard Delay Format (SDF). The delay model presented in section 3 is sufficient
for the most important DELAY constructs defined in SDF. More specifically, ABSO-
LUTE and INCREMENT delays are supported with IOPATH, PORT, INTERCONNECT,
and DEVICE entries. The optional inertial delay specifications PATHPULSE and PATH-
PULSEPERCENT are supported as well. Conditional delays (COND and CONDELSE)
are not supported and since only two-valued logic is used, RETAIN times are ignored
as well. Each primitive logic gate corresponds to one instance of the elemental model
shown in Figure 3 with the δ values set to the appropriate numbers from IOPATH,
DEVICE, PATHPULSE and PATHPULSEPERCENT entries. PORT and INTERCONNECT
delays are mapped to buffer elements inserted between the gates. These buffer ele-
ments have one input and the Boolean function is the identity. The four delays of the
buffer δ1r , δ1f , δ

1
ip, δ

1
in are set to the appropriate values to model the delay of the wire or

port it is located on.
Figure 9 shows a small, delay annotated circuit (a) and its canonical mapping to de-
lay processing elements (b). Table I reports the number of gates in column g and the
number of delay elements resulting from this canonical mapping in column dcan for
all considered benchmark circuits. The data shows, that the number of delay elements
is almost three times as large as the number of gates in the circuit. This is no sur-
prise and also state-of-the-art timing simulators treat wires as separate delay entities
internally in order to support wire delays.
The presented delay model allows for a simple optimization to reduce the number of
delay elements and improve simulation performance. Multiple single-input delay ele-
ments on a signal can be merged into a single delay element with equivalent behavior
by combining the delay values appropriately. Also, a multi-input delay element can
be merged with a single-input delay element at its output given that there are no
branches in between. Figure 9-c shows the optimized timing model for the example
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a)

b)

c)

Fig. 9. a) A combinational circuit with delay annotations for interconnects and IO-paths symbolized by
arrows. b) A canonical mapping to delay elements. c) An optimized timing model obtained by merging delay
elements.

circuit after merging four delay elements. Buffers for PORT and INTERCONNECT de-
lays remain only at circuit inputs and fanout branches. Column dopt in Table I shows
that the number of delay elements remaining after this simple optimization is signif-
icantly reduced compared to the canonical mapping. For all the following simulation
experiments, this optimized mapping is used.

6.2. Case Study: Scan Test Power Simulation

The sample application used here to illustrate the performance benefits of the pre-
sented simulation method is scan test power estimation [Holst et al. 2012]. The
simulation-based power estimation is fault-model independent and can be performed
for any pattern set. Here scan-based testing using the stuck-at fault model is consid-
ered. During scan test, test patterns are shifted into the circuit via scan chains causing
a lot of switching activity within the circuit under test. For the sake of accurate power
estimation, all internal signal transitions caused by applying a complete test pattern
set are going to be simulated. The trace data generated during simulation can then be
used to calculate the weighted switching activity.
The test pattern sets used for each circuit are standard stuck-at test sets generated by
a commercial test generation tool. The number of patterns in each test set is reported
in column p of Table I. These test sets are expanded according to the scan-chain config-
uration into a set of input stimuli for the combinational circuit. For the NXP designs
the scan-chain configurations were known while for the ITC benchmarks, configura-
tions with a maximum scan chain length of 100 flip-flops were generated randomly.
Figure 10 illustrates this step by a simple full-scan circuit with two scan chains of
three flip-flops each. The application of a single test will generate three sets of input
stimuli for loading the pattern, one set of stimuli for the capture cycle and another
three stimuli for shifting out the response. These seven sets of input stimuli are easily
obtained from the test pattern set in preprocessing and then simulated in parallel with
the presented approach. The number of input stimuli s for each circuit is shown in the
last column of Table I.
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Table I. Circuit and test data characteristics.

Gates Delay Elements Stuck-at Test Set

Fig. 9-a Fig. 9-b Fig. 9-c Patterns Stimuli
Circuit g dcan dopt p s

b21 1 7.9k 23k 18k 319 32k
b20 1 8.0k 23k 18k 347 35k
b20 9.3k 27k 21k 451 46k
b21 9.3k 27k 21k 454 46k
b22 1 12k 35k 28k 363 37k
b22 14k 41k 32k 439 44k
p35k 21k 62k 46k 1.2k 277k
p45k 22k 64k 48k 2.1k 139k
b17 1 22k 65k 49k 574 58k
b17 24k 70k 53k 545 55k
p469k 32k 94k 74k 315 328k
p77k 34k 98k 75k 515 274k
p100k 50k 145k 115k 2.1k 1.3M
p89k 53k 154k 116k 630 323k
p78k 58k 169k 136k 82 8.6k
b18 1 61k 179k 139k 584 59k
b18 63k 184k 143k 582 59k
p81k 71k 205k 171k 325 326k
p141k 96k 280k 212k 622 566k
b19 1 122k 357k 278k 644 65k
p269k 122k 361k 271k 748 566k
p267k 122k 361k 271k 728 551k
b19 125k 367k 285k 644 65k
p239k 145k 418k 329k 490 457k
p279k 148k 433k 330k 744 486k
p295k 149k 441k 326k 1.6k 5.3M
p330k 159k 466k 360k 2.3k 1.3M
p259k 181k 527k 415k 612 571k
p286k 187k 549k 423k 1.0k 684k
p418k 221k 643k 493k 841 793k
p500k 258k 750k 587k 595 484k
p388k 264k 772k 610k 453 446k
p378k 290k 843k 680k 80 8.4k
p483k 290k 842k 656k 346 322k
p874k 301k 884k 672k 1.2k 1.7M
p533k 363k 1.1M 827k 473 441k
p951k 478k 1.4M 1.1M 1.6k 4.0M
p1522k 550k 1.2M 1.2M 4.2k 12M
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Fig. 10. Expanding a scan test pattern to input stimuli for parallel timing simulation.
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6.3. Simulation Run-Time Performance

Since there are no standard implementations of GPGPU-based timing simulators with
comparable capabilities available, the run-times of a state-of-the-art event-based com-
mercial simulator are used here as baseline. The event-based simulator ran on a single
CPU of the host system. Although commercial simulators that support multi-threading
are available, their scalability varies greatly with design data characteristics like hier-
archy or modularity as well as used application features like parallel logging or report-
ing. Using a multi-threaded event-based simulation tool as baseline would therefore
introduce many uncertainties and additional variables which would render the re-
ported speedup numbers less useful. By using single-threaded event-based simulation
as baseline, the benefit of the presented approach over any particular multi-threaded
simulation environment can be easily calculated based on the speedup delivered by
this environment and the numbers reported here.
We validated our simulator by running both simulators with the same input data
and confirmed that they indeed produced exactly the same trace data on all signals
within the design. Thus, the actual power estimation results are the same for both the
event-based commercial simulator and the presented approach. However, as record-
ing tracing data largely dominates the overall runtime in both simulators, tracing was
disabled during performance measurements.
The run-times reported for both the single-threaded event-based simulator and the
presented approach only includes the elapsed time (wall-clock time) spent on actual
simulation. For the event-based simulator, the timer is started just before the first
stimulus is applied by the testbench and it is stopped with the successful simulation of
the last stimulus. For the presented approach, the timer starts with the first communi-
cation to the GPU (transferring design data and first stimuli) and it is stopped as soon
as the last level of the last simulation pass has been processed. This way, run-times for
the proposed approach include all sequential parts such as the time spent for transfer-
ring the design, test data and timing annotation to the GPU, as well as all simulation
overheads for controlling and calibrating the simulation including re-allocating wave-
form memory on the CPU while the GPU is idle.
Setup time spent on design loading, preprocessing and compilation was excluded for
both simulators. While compilation time for the commercial event-based simulator was
quite long for larger designs, the presented high-throughput simulator loads and pre-
pares all designs quickly due to its efficient linear-time preprocessing. The largest
reported circuit, p1522k, took less than 6 minutes from starting the simulation system
until the first communication with the GPU and the start of the simulation perfor-
mance timer.
The run-times for state-of-the-art event-based timing simulation are shown in column
tebs of Table II. Timing simulations even for the rather compact stuck-at test sets take
very long, because every shift cycle is simulated separately. For example, b21 1 needs
only 319 test patterns, but shifting causes 32k distinct input stimuli and event-based
simulation takes 5.7 minutes. For larger designs, simulation times of several days were
observed. Simulations of larger pattern sets as used in delay testing or logic built-in
self testing are just impractical.
The run-time performance of the presented simulator depends on the initial waveform
capacity c′. Low initial waveform capacities can cause many overflows and calibration
loops at first, which reduces the overall performance significantly. This effect is re-
duced by choosing a higher initial waveform capacity. If the initial waveform capacity
is chosen too high, however, a lot of memory is wasted on signals with a low number

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 201x.



High-Throughput Logic Timing Simulation on GPGPUs 0:19

Table II. Performance comparison and speedups over state-of-the-art event-based timing simulation for an initial wave-
form capacity c′ of 16 and 32.

Init. Waveform Capacity c′ = 16 Init. Waveform Capacity c′ = 32

Event-Based Cold Run Re-Run Cold Run Re-Run

Circuit tebs cl16 tcold16 tfull16 cl32 tcold32 tfull32

b21 1 5.7 m 2 2.3 s 149 X 940 ms 362 X 0 732 ms 465 X 788 ms 432 X
b20 1 5.3 m 2 2.5 s 126 X 949 ms 335 X 0 756 ms 420 X 788 ms 403 X
b20 9.3 m 3 3.6 s 156 X 1.0 s 538 X 0 1.1 s 500 X 1.0 s 543 X
b21 8.4 m 3 3.6 s 139 X 1.1 s 481 X 0 1.1 s 449 X 1.0 s 495 X
b22 1 8.7 m 3 3.7 s 142 X 1.1 s 486 X 0 1.2 s 453 X 1.1 s 475 X
b22 0:12 h 4 4.8 s 159 X 1.4 s 535 X 0 1.5 s 512 X 1.4 s 526 X
p35k 1:08 h 40 31 s 134 X 10 s 405 X 0 11 s 371 X 11 s 372 X
p45k 0:46 h 23 18 s 158 X 5.8 s 485 X 0 5.9 s 474 X 5.7 s 494 X
b17 1 0:13 h 8 6.6 s 119 X 2.4 s 334 X 0 2.2 s 361 X 2.3 s 349 X
b17 0:15 h 8 9.4 s 97 X 2.5 s 367 X 0 2.5 s 369 X 2.5 s 360 X
p469k 31:11 h 34 4.6 m 408 X 1.8 m 1044 X 38 4.4 m 422 X 1.8 m 1042 X
p77k 2:50 h 62 2.0 m 86 X 23 s 448 X 91 2.2 m 77 X 25 s 416 X
p100k 24:54 h 327 8.6 m 173 X 2.1 m 702 X 1 2.2 m 668 X 2.2 m 690 X
p89k 3:24 h 5 33 s 369 X 28 s 440 X 0 28 s 442 X 28 s 431 X
p78k 0:27 h 4 9.5 s 173 X 1.5 s 1089 X 0 1.5 s 1090 X 1.4 s 1155 X
b18 1 1:02 h 19 57 s 65 X 8.2 s 453 X 38 1.4 m 43 X 8.2 s 455 X
b18 1:08 h 20 1.1 m 63 X 8.2 s 499 X 39 1.5 m 46 X 8.5 s 483 X
p81k 6:18 h 110 4.1 m 93 X 42 s 539 X 0 43 s 532 X 43 s 533 X
p141k 19:16 h 265 0:13 h 86 X 1.7 m 693 X 0 1.8 m 656 X 1.7 m 669 X
b19 1 2:32 h 44 3.6 m 42 X 17 s 521 X 88 5.2 m 29 X 18 s 506 X
p269k 20:45 h 45 4.5 m 278 X 2.1 m 590 X 0 2.3 m 544 X 2.3 m 546 X
p267k 20:21 h 46 4.3 m 286 X 2.0 m 596 X 0 2.2 m 547 X 2.2 m 553 X
b19 2:49 h 45 3.6 m 47 X 17 s 580 X 92 5.5 m 30 X 18 s 561 X
p239k 32:05 h 500 1:06 h 28 X 2.5 m 773 X 134 0:16 h 115 X 2.7 m 704 X
p279k 15:47 h 187 0:15 h 60 X 2.2 m 434 X 0 2.4 m 396 X 2.4 m 399 X
p295k 175:42 h 413 0:54 h 192 X 0:22 h 460 X 0 0:25 h 408 X 0:25 h 421 X
p330k 80:37 h 994 1:19 h 61 X 6.6 m 728 X 0 7.5 m 647 X 7.2 m 675 X
p259k 46:56 h 728 1:54 h 24 X 3.8 m 748 X 187 0:28 h 100 X 4.2 m 675 X
p286k 30:03 h 264 0:30 h 59 X 3.8 m 469 X 0 4.2 m 428 X 4.1 m 439 X
p418k 63:58 h 869 1:45 h 36 X 6.2 m 620 X 58 0:14 h 271 X 7.4 m 521 X
p500k 58:06 h 906 2:42 h 21 X 5.0 m 699 X 717 2:06 h 27 X 5.9 m 586 X
p388k 67:05 h 726 2:22 h 28 X 4.4 m 909 X 610 1:55 h 34 X 5.0 m 812 X
p378k 2:11 h 21 3.0 m 43 X 7.2 s 1093 X 0 7.6 s 1043 X 7.1 s 1109 X
p483k 67:46 h 664 1:43 h 39 X 3.8 m 1061 X 542 1:20 h 50 X 4.4 m 917 X
p874k 187:39 h 1.7k 6:13 h 30 X 0:20 h 554 X 592 2:06 h 88 X 0:26 h 428 X
p533k 79:47 h 1.1k 3:27 h 23 X 6.4 m 752 X 646 1:56 h 41 X 7.5 m 641 X
p951k 790:10 h 8.4k 36:33 h 21 X 1:56 h 405 X 371 3:54 h 202 X 2:26 h 323 X
p1522k 1956:26 h 8.1k 61:23 h 31 X 6:28 h 301 X 2.1k 22:19 h 87 X 8:09 h 239 X

of hazards and data parallelism is reduced, which in turn again lowers the overall
simulation performance.
To investigate this trade-off, simulation runs with four initial waveform capacities
(c′ = 16, c′ = 32, c′ = 64, and c′ = 128) were performed. For each capacity, two sim-
ulation runs are conducted: One cold run, which starts with the initial capacity c′ for
all waveforms and handles all overflows by calibration loops, and one re-run, which
uses the final, calibrated waveform capacities obtained from the cold run in order to
avoid calibration loops altogether. The run-times obtained from cold runs represent the
worst case and the times obtained from the re-runs represent the best case for each
benchmark design.
Table II shows the results for the two initial waveform capacities c′ = 16 and c′ = 32 for
each benchmark circuit. A comparison of the number of necessary calibration loops for
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these initial waveform capacities (columns cl16 and cl32) shows, as expected, a signifi-
cant reduction for higher c′. The increase from c′ = 16 to c′ = 32 is already sufficient
to avoid all overflows and to obtain the highest simulation performance even in the
cold run for many benchmarks. The reduction of calibrations directly translates into
improved run-times for the cold runs (columns tcold16 and tcold32). In the case of re-runs
(previously calibrated simulations) the performance for c′ = 16 reported in column
tfull16 is better than for an initial capacity of c′ = 32 (column tfull32). This expected ef-
fect is due to reduced data-parallelism for c′ = 32 as in this case even signals with
no hazards at all take double the amount of memory compared to a simulation with
initial capacity of c′ = 16.
Figure 11 shows the speedups obtained for c′ = 16 and c′ = 32 (data from Table II) as
well as c′ = 64 and c′ = 128. The black graph shows the speedup on cold runs, and the
grey graph shows the speedup on re-runs. For each case and each initial capacity, the
minimum, the maximum, and the average speedups over all benchmark circuits are
shown.
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Fig. 11. Minimum, average, and maximum speedup over all benchmark circuits in relation to initial wave-
form capacity.

Cold runs are slowest with low initial capacities like c′ = 16 and fastest at c′ = 64.
After that point, the initial capacity of all signals is so high that no calibration loops
are necessary anymore and both cold runs and re-runs provide the same speedup. In
re-runs, the trend of decreasing speedup with higher initial waveform capacities con-
tinues for c′ = 64 and c′ = 128. However, the impact of reduced data-parallelism due to
the higher c′ is by far not as pronounced as the impact of calibration loops in the cold
runs. Even for the largest benchmarks, the run-times increase only by a few seconds or
a minute at most, which is barely noticeable during real applications. This shows, that
the benefit of putting great efforts into carefully adjusting waveform capacities exactly
to the specific needs of signals is quite limited. Although a lot of memory remains un-
used by generously allocating space for signals with only few hazards, the resulting
undisrupted data-parallel operation of the GPU provides a higher performance ben-
efit than elaborate memory management and calibration techniques. This fact again
underlines the efficiency of the memory allocation approach chosen for this simulator,
which uniformly allocates space sufficient for the vast majority of signals and refines
this allocation only in rather few cases where overflows occur.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0, Pub. date: 201x.



High-Throughput Logic Timing Simulation on GPGPUs 0:21

Depending on the specific application area, either high long term performance (fastest
re-runs) of high instantaneous performance (fast cold runs) are desired. If maximum
performance is desired in the long run, an initial capacity of c′ = 16 should be chosen.
Maximum instantaneous performance is provided with an initial capacity of c′ = 64.
If no calibration is necessary, the CPU only controls the simulation process and the
entire run-time is determined by GPU performance and transfers. With a memory
bandwidth of 15.75 GB/s between the CPU and GPU memory, the run-time is domi-
nated by the GPU performance. For example the run-time for circuit p1522k reported
in column tfull32 of table II is 8 hours 9 minutes. It consists of 18 minutes (3%) used for
transfers and 7 hours 51 minutes (97%) used in the GPU simulation kernels. In case of
calibrations, CPU executes the mentioned memory management tasks, but even then,
over 90% of the run-time is spent by the GPU.
Compared to the performance of event-based simulation, the presented simulator is
always one or two orders of magnitude faster, with peaks of up to three orders of mag-
nitude for some benchmark circuits. Even with many calibration loops in the cold run
with c′ = 16, column tcold16 shows a significant run-time improvement with speedups
ranging from 21 X to 408 X across all benchmarks. With an initial waveform capacity of
c′ = 32, the observed speedups for cold runs improve to a range of 27 X to 1090 X. The
cold run speedups improve further if an initial waveform capacity of c′ = 64 is used
and range from 120 X to 1043 X. For c′ = 128, speedups between 100 X and 1043 X
are observed. In calibrated simulation runs, speedups of at least 273 X were observed.
Calibrated simulations with our simulator reduce an event-based simulation time of
24 hours down to 5.3 minutes in the worst and 1.3 minutes in the best case. Among all
GPGPU-based simulators available, the presented simulator is the first that consis-
tently performs at least two orders of magnitude faster than event-based simulation
on CPUs even for very large designs. It is also the first that calculates all hazards
and handles collisions as well as glitches correctly in the GPGPU simulation kernel in
order to produce exactly the same results as commercial simulators on CPUs.

7. CONCLUSIONS

The presented waveform principle, in which complete signal histories are propagated
through the combinational circuit, combines the versatility of event-based timing
simulation and the computing power of data-parallel architectures in a unique way.
For the first time, hazards, pulse-filtering, and pin-to-pin delays are supported in a
GPGPU-based gate-level simulator.
The simulator exploits two dimensions of parallelism to generate sufficient GPGPU
workload over a wide range of design sizes. The memory efficient encoding and fast
evaluation of waveforms with careful consideration of control flow and memory access
patterns allows the very efficient use of the computing resources and memory band-
width available. Together with optimal memory management, minimal data transfer
overhead, and efficient calibration, the complete system is able to deliver simulation
performance one to more than two orders of magnitude faster than state-of-the-art
event-based simulators.
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