
Structural Software-Based Self-Test
of Network-on-Chip

Atefe Dalirsani, Michael E. Imhof, Hans-Joachim Wunderlich
Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Germany

{dalirsani, imhof}@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de

Abstract—Software-Based Self-Test (SBST) is extended to the
switches of complex Network-on-Chips (NoC). Test patterns
for structural faults are turned into valid packets by using
satisfiability (SAT) solvers. The test technique provides a high
fault coverage for both manufacturing test and online test.

Index Terms—Network-on-Chip (NoC), Software-Based Self-
Test (SBST), Automatic Test Pattern Generation (ATPG),
Boolean Satisfiability (SAT)

I. INTRODUCTION

Network-on-Chips are an alternative for many core
System-on-Chips (SoC) enabling high-performance commu-
nication, with advantages for bandwidth, latency and de-
pendability. As the technology scales down and the operation
frequency increases, systems become more vulnerable to
complex defect mechanisms such as latent defects, timing
variations and aging. Consequently, low-cost testing methods
integrated into the chip become attractive for both production
testing and in-field testing.

An NoC comprises a large number of switches which
are connected to each other via communication links. Test
infrastructure like scan-design may be employed to apply
test patterns and reach acceptable test time [1, 2]. Even in
presence of defective components, an NoC may still operate
due to its implicit redundancy, in the worst case with a
degraded performance [3].

Built-In Self-Test (BIST) for in-field testing integrates the
test pattern generation and test response evaluation on-chip.
Structural testing targets faults of a predefined structural
fault model like stuck-at faults and allows measuring the
fault coverage as a quality metric. Depending on the prod-
uct quality requirements, more complex fault models like
transition faults, delay faults, bridging faults or cross-talk
faults may be applied as well. In contrast, functional testing
targets certain functionalities of a system, for instance the
instructions of a microprocessor. As it is impossible to test
the functionality completely, e.g. all possible arguments of
an operation, or all possible instruction orders, it is hard to
estimate the final quality of such a functional test and the
structural fault coverage is rather limited [4].

For functional testing of NoC, references [5–7] use data
encoding in order to detect faults in the communication links
and the switch datapath elements. Test repetition classifies
the transient or permanent nature of the fault. In [8], a
built-in self-test and self-diagnosis circuit is designed for the
mesh topology which traces 20 datapaths (east to west, east
to north, etc.) in order to detect and locate faulty FIFOs

and MUXes in the switches. Similarly, [9] introduces a
functional fault model based on the 20 datapaths in the
switch, targeting the multiplexers of the crossbar in a 2D
mesh NoC with deterministic XY routing. In [10], based on
a system level fault model, an online fault detection for the
NoC switches has been proposed. In [6], a fault detection and
diagnosis mechanism targeting permanent faults is presented
that uses error syndrome collection and packet/flit counting.
The method uses error detecting codes in order to deal with
data faults, and introduces dropped flits/packets, spurious
flits/packets and misrouted packets to describe control faults
in the switch. In [11], all link and router level faults are
mapped to uni-directional links. Based on this fault model,
a reconfiguration scheme is developed that improves the
performance and connectivity in presence of faults. These
techniques will provide some confidence about the correct
functionality of certain parts of the switch, but a high
structural fault coverage is not explicitly targeted.

For microprocessors, the benefits of structural testing and
functional testing are combined by a so-called structural
software-based self-test (SBST) [12–16]. Here, ATPG pro-
vides deterministic, structural test patterns which are trans-
formed into arguments of a sequence of valid instructions.
In a similar way, the paper at hand transforms deterministic
test patterns into valid packets of an NoC.

This paper presents for the first time a structural software-
based self-test (SBST) scheme for Networks-on-Chip. Struc-
tural faults in NoC switches and interconnects are targeted
and tested by valid NoC-packets without the need for dedi-
cated test infrastructure. In fact, the presented SBST scheme
combines the advantages of state-of-the-art structural and
functional test approaches for NoC infrastructure.

Fig. 1 illustrates the principle of SBST in the scope of
NoCs. As an example, in the mesh topology, every switch
is connected to four neighboring switches and a Processing
Element (PE) is attached to each switch.

The Switch Under Test (SUT) is tested by applying a set
of test patterns to its incoming links and observing the test
responses at the outgoing links. The test patterns form valid
NoC packets, hence they can be fed to the NoC externally
as long as they pass the SUT, without requiring to put the
system in a non-functional test mode. Here, we assume that
the set of test packets is generated by software running
on the processing elements (PE) attached to the NoC. The
generated test packets target structural faults in the SUT and
its links under a single fault assumption. The resulting test

S

Switch

under

Test
S

P
E

S

P
E

S

P
E

S

P
E

P
E

Test program

Test data
S

S S

..
.

..
.

...
...

Fig. 1. Target architecture for SBST of a switch

responses are captured and evaluated by the test programs in
the ambient PEs. The SBST starts when all PEs surrounding
the SUT have sufficient resources to run the test program.
A local signal (such as the Ack/Req. signal used for link
flow control) can be utilized to synchronize the launch of
the test programs running on the PEs involved in testing
a SUT (Fig. 1). The switches and PEs give the highest
priority to test packets and bypass their caches. Since the
switches are identical, the SUT access time through all the
incoming links are deterministic. Moreover, once the test
begins, normal packets are not routed through the SUT. The
complete NoC is tested by consecutively testing all contained
switches. Depending on the network topology and the switch
location, the SBST pattern generation is adjusted such that
only available neighboring PEs contribute in testing. For
example, in a 2D mesh a switch at the boundary has three
neighbors, consequently its test patterns contain input values
for only three input ports of the switch.

The key concept of SBST for NoC switches is the
generation of efficient test patterns that achieve a high fault
coverage. Since processing elements have only access to
the functional input and outputs of the switches, functional
patterns are used in SBST. In contrast to scan-based testing,
direct controllability and observability of the sequential
states of the switch (i.e. pseudo primary inputs and outputs)
is not possible. Therefore, achieving a high structural fault
coverage with SBST patterns poses a challenge which is
tackled in this work.

The SBST pattern generation is modeled as a Boolean
satisfiability (SAT) problem in conjunctive normal form
(CNF). The resulting SAT instance reflects three aspects
inherent to SBST test generation for NoCs:

1) Circuit Model: The combinational logic and intercon-
nect of the Switch under Test is described in CNF using
the Tseitin transformation [17]. The sequential behavior
is modeled by time-frame expansion.

2) Fault Model: Classic fault models such as stuck-at
faults are not sufficient to reason about arbitrary defects
in recent process technologies. Hence, the Conditional
Line Flip (CLF) calculus [18] is used as a generalized

fault model to describe arbitrary defect mechanisms in
the switch logic and the links.

3) NoC-Packet Model: Finally, only valid packets are
accepted as test patterns in order to utilize the packet-
based communication platform of the NoC for SBST.

The rest of the paper will discuss the principle of the
SAT-based SBST pattern generation. Section II explains how
a sequential NoC switch is modeled in CNF. Section III
focuses on representing CLFs in the SAT model. Section
IV describes how the syntax of NoC packets is modeled. In
section V, the flow of pattern generation by means of the
SAT instance is explained. Finally, section VI demonstrates
the efficiency of the SBST method through experimental
results which is wrapped up by the conclusion in section
VII.

II. CIRCUIT MODELING AND SEQUENTIAL MAPPING

The combinational core of the switch is extracted by
removing the flipflops of the circuit and replacing the
input/output signals of the flipflops by pseudo primary
output/input ports, respectively. The structure of the NoC
switch is modeled by representing its combinational core in
conjunctive normal form (CNF) with the Tseitin transforma-
tion [17]. We call the combinational switch model ΦC .

The sequential behavior of the switch is modeled by
time-frame expansion which converts the time domain into
the space domain (Fig. 2). As the switch is a sequential

PI1

PPI1

PO1

PPO1

PI2

PPI2

PO2

PPO2

PIT

PPIT

POT

PPOT

...

1

C

2

C

T

C

Fig. 2. Time-Frame Expansion for ΦS : T copies of ΦC

circuit, some faults may firstly propagate to the internal
states and after a few cycles become observable at the switch
functional outputs. Hence, to achieve high fault coverage,
the test patterns must define the functional inputs and the
corresponding test responses for multiple consecutive cycles.
The sequential switch ΦS is modeled as formulated in
Eq. (1) by instantiating multiple copies of the combinational
switch instance, ΦC , one after the other such that the literals
of the pseudo primary inputs of each copy are connected to
the literals of the pseudo primary outputs of the previous
copy in the SAT instance.

ΦS =
T∧

t=1

Φt
C ∧

T∧
t=2

{PPIt ← PPOt−1} (1)

In the above equation, Φt
C indicates to the copy tth of the

combinational switch instances in ΦS .

III. MODELING OF CONDITIONAL LINE-FLIPS

To develop a generalized SBST method targeting arbitrary
defects in the switch and the interconnects, the Conditional
Line Flip (CLF) model is used [18]. It formally describes

defects as pairs consisting of a location or victim line v and
an activation condition. Whenever the condition evaluates
to true, the value of the victim line is inverted. A CLF is
noted by the name of the victim line v and an xor-symbol
followed by a condition clause as: vf := v⊕ [condition]. In
this notation, vf represents the value of the victim line. The
condition is of arbitrary nature (Boolean, temporal, or even
random) and is defined as an arbitrary function over time.

With respect to the targeted faults, appropriate val-
ues/functions can be used as a condition activating a fault
only in some cycles. For example, a static bridge between
two signal lines a and b is defined by the following gener-
alized CLF formulation:

af := a⊕ [fa(b) · (a⊕ b)] ,
bf := b⊕ [fb(a) · (a⊕ b)]

in which fa and fb are two Boolean functions which deter-
mine the actual behavior of the bridge. There are exactly four
basic expressions for each function: fa(b) ∈ {0, 1, b̄, b} and
fb(a) ∈ {0, 1, ā, a}, resulting in 16 possible configurations
for fa and fb. As an example, for a 4-way bridge in which
a and b swap the values, fa(b) = fb(a) = 1.

In order to generate test patterns for a CLF fault in the
switch, two conditions must be satisfied:

• CLF is activated: The CLF condition is true in at least
one time frame and leads to a different value in the
good and faulty circuit.

• CLF is observed in at least one primary output.

Figure 3 depicts the SAT model used to represent a CLF
for a single time-frame, t.

OR

o
b

s
e

rv
a

b
le

XOR

XOR

..
.

..
.

..
.

(for copy t)

Fault location

Output cone

......

f

t t t
l l d

f

t
l

t
l

,f t

C

t

C

S

tj
o

f

tj
o

CLF

Fig. 3. Modeling a CLF in a single time-frame.

Starting from the model Φt
C representing the good circuit

in a single time-frame t, a CLF f is defined by the victim
line v represented by literal lt in the good circuit. The faulty
circuit Φf,t

C is generated by copying the output cone of
the fault location, where all internal literals are renamed,
and the victim line literal is represented by lft . All literals
representing signals at the cone boundary are identical to
the literals used in Φt

C . If the fault propagates to the pseudo
primary outputs, Φf,t

C includes additionally the gates in the
output cone of the equivalent pseudo primary inputs as it
is shown in Fig. 4. The cones may have some overlaps. In

POt-1

PPOt-1

PPIt

POt

PPOt

1

f

t
l

f

t
l

POt+1

PPOt+1

1

f

t
l

,f t

C
 (copy t)

Fig. 4. Faulty instance

order to keep the SAT instance smaller, each gate is included
only once in the model.

The condition of a CLF f is represented by the literal
dt that relates the good circuit and the faulty circuit as
follows: lft ← (lt ⊕ dt). In order to observe a fault effect
at a primary output, all output literals otj of the good circuit
are compared to the output literals of the faulty circuit
of

tj : ∨n
j=1(otj 6= of

tj). In this expression, n is the number
of primary outputs to which the fault is propagated. The
expression is equivalent to the XOR gates followed by an
OR gate in Fig. 3.

To represent a single CLF f in all modeled time-frames
T , faulty circuits are added for all time-frames and form the
faulty instance Φf

S :

Φf
S =

T∧
t=1

Φf,t
C (2)

Φf
S is linked to the good circuits via the condition literals

as follows:

Φcond =
T∧

t=1

lft ← (lt ⊕ dt) (3)

Since dt are free literals in the model, the SAT solver may
assign values to them such that the fault is activated in any
cycle independently. As it is sufficient to detect a CLF in a
single time-frame, the output comparison is modeled as:

Φobs =
T∨

t=1

∨n
j=1(otj 6= of

tj) (4)

Therefore, the corresponding clauses for modeling a single
CLF f in all time-frames T are denoted by ΦCLF that
is a conjunction of clauses of the faulty instance Φf

S , the
condition literals Φcond, and a comparison over the outputs
of the good and faulty copy as follows:

ΦCLF = Φf
S ∧ Φcond ∧ Φobs . (5)

IV. MODELING OF VALID NOC PACKETS

To ensure the test patterns are valid NoC packets, the
appropriate clauses which define the packet characteristic
must be included in the SAT model. Each NoC packet
consists of several flits (flow control units). The flits of a
packet arrive one after the other via the incoming ports of
a switch as shown in Fig. 5. The first flit is called head flit
and is followed by an arbitrary number of data flits. The last
flit is called tail flit.

...

k
2

k
1

k
2

k
1

k
2

k
1

Flit: 1 2 n...

Packet

Containing n flits

head
data tail...

Flit id
Switch

One flit per clock.

Flit is applied to data

inputs of a switch port

Fig. 5. NoC packet format

A switch has several ports (e.g. five ports in mesh archi-
tecture). In order to generate test patterns at port i of the
switch that represent valid packets, the input sequence must
contain head and tail flits in a manner that every head flit is
followed by a tail flit:

(PIi
t = head)→ (PIi

t+fpp−1 = tail), 1 ≤ t ≤ T (6)

where fpp is the number of flits per packet, and PIi
t refers

to the switch data inputs at cycle t of the test pattern. Since
head and tail flits are mandatory for a packet, fpp is at
least 2. However, for fpp > 2 the intermediate flits must be
defined as data flits:

(PIi
t = head)→ (PIi

j = data) (7)

for t < j < (t + fpp − 1). According to the packet
specification of the NoC, the flits can be identified by means
of a few control bits (Flit id in Fig. 5), e.g. 01, 10, and 00 can
be used as flit id for head, tail, and data flits. Equation (6) and
(7) are mapped to clauses by Boolean logic minimization and
added to the SAT model for all switch ports: Φvalid packet.
They ensure that the SAT model is only satisfiable if the test
patterns are in the form of NoC packets.

Valid NoC packets satisfy the control flow of the switch
(similar to instructions in the SBST of processors). Adding
valid packet clauses adjusts the SAT to find the solutions for
the faults in the controlling parts. For example, a test pattern
may contain several NoC packets which arrive at different
switch ports at the same time, requesting the same outgoing
port. This activates the scheduler of the switch to decide
which packet has the priority. Moreover, as equation (6) does
not impose any constraint for the time that the head flit
arrives, the packet may arrive at any cycle between 1 and T .
In this case, if the outgoing port has been already assigned to
another packet, the new incoming packet must not overwrite
this setting.

V. PATTERN GENERATION

As explained earlier, the SAT instance for generating
SBST patterns for NoCs is constructed as a combination of
the clauses of the unrolled switch ΦS , the clauses describing
a CLF fault, and the clauses to ensure only valid packets are
accepted as a solution:

ΦSBST = ΦS ∧ ΦCLF ∧ Φ valid
packet

. (8)

To generate SBST patterns for all CLFs in the switch,
as shown in Fig. 6 the SBST pattern generation process
selects the first undetected CLF location from the fault list
and builds ΦSBST for the fault location as explained before.
The process starts with a minimum T of 3, two cycles
for head and tail flit to arrive/depart and one cycle for the
internal router process. If ΦSBST is satisfiable, the values
of the input literals are stored as the test pattern. Then, the
test pattern is applied to the SAT instance as a constraint.
The process searches for additional faults detected by this
pattern and prunes them from the CLF fault list. The process
continues until test patterns are found for all faults detectable
under the current sequential depth. To increase the coverage,
the faults that are not testable under the sequential depth T
are reprocessed by iteratively increasing the sequential depth
to T +1 and repeating the SBST pattern generation process.
This continues up to the maximum sequential depth of the
circuit plus one, which is reported by a commercial ATPG
tool.

Apply pattern to SAT as constraints

Check if SAT is satisfiable for yet undetected faults

Prune extra detected faults from fault list

No

Yes

Store input values as test pattern

Nontestable fault

Build ΦSBST for the next undetected CLF

SAT

satisfiable?

Fig. 6. SBST pattern generation flow

VI. EXPERIMENTAL EVALUATION

The SBST pattern generation method is independent of
the internal architecture of the switch and the topology. The
number of input ports of the switch which are available for
testing must be known. Besides, in order to introduce valid
packet literals, the flit width and the flit format is required.

We evaluate the efficiency of the presented SBST method
on a typical switch designed for an NoC mesh topology.
The switch consists of five input and output ports, crossbar
multiplexers, a router, and additional control logic for the
handshake signals. It implements wormhole XY routing and
processes the input channels in a round-robin fashion. The
switch is implemented in VHDL and synthesized using
Synopsys Design Compiler. The target library lsi10k is
constrained to basic gate primitives. Since the memory
elements are usually equipped with advanced memory BIST,
there is no need to consider the channel buffers in the
SBST pattern generation process. Table I summarizes the
synthesis statistics of the switch for a flit width of 8 bits.
The first four columns report the circuit name, the number of
primary inputs (PIs), primary outputs (POs), and the number
of flipflops (FFs), which is equal to the number of pseudo

primary inputs/outputs. The remainder of the table reports
the number of gates and the size in cell area units where
the cell area of a two input NAND gate in the library is one
area unit.

TABLE I. NoC Switch Characteristics

Name # PIs # POs # FFs # gates Cell area

Switch 58 50 497 3618 8130

A. Stuck-at Faults

For comparison, the fault coverage for stuck-at faults
obtained by a scan based test strategy of a commercial ATPG
tool was computed. There, 506 faults out of 14355 collapsed
faults in the switch are recognized Unused by the tool,
leading to the fault coverage of 96.47% and fault efficiency
of 100%.

Table II shows that the fault coverage of the presented
SBST is even higher (96.53%). However, these numbers
cannot be directly compared as the number of faults in
the scannable model and the unmodified switch do not
match exactly. Hence, a commercial sequential ATPG tool
without any constraints was applied as well. It reports a fault
coverage of 83.29% and a fault efficiency of 86.33%, while
2.39% of the faults are untestable. All faults classified as
untestable by the ATPG are functionally redundant.

Table II presents the complete process which starts with
an initial sequential depth of 3. The second row in the
table shows the number of faults which are testable for
each sequential depth. The maximum sequential depth of the
switch is 8, hence it is sufficient to examine 9 time-frames
(T = 9) during the pattern generation process. The last
column of the table sums up the detailed result and presents
the SBST pattern generation statistics for stuck-at faults in
the switch. The SBST process is able to generate test patterns
for more than 95% of the faults for the initial sequential
depth. However, for T = 4 and T = 5, test patterns are
found for 122 additional faults. For larger values of T no
additional patterns are found. Among 10994 collapsed faults
in the switch, 10613 faults are testable and for the rest, the
SAT model proves that there exists no valid NoC packet
such that the fault is propagated to the functional switch
outputs. As the switch has been unrolled up to its maximum
sequential depth, the faults which remain undetectable have
no functional influence during the normal operation of the
switch.

TABLE II. Pattern Generation for Stuck-at Faults (10994 Collapsed Faults)

T = 3 T = 4 T = 5 total

Detected faults 10491 121 1 10613
Undetectable faults 503 380 379 379
Fault coverage 95.42% 96.52% 96.53% 96.53%

Test patterns 504 32 1 537
Test volume (bits) 163296 13824 540 177660
Test time (cycles) 2016 160 6 2182

The last three rows of the table report some statistics
of the generated test patterns. Firstly, the number of test
patterns generated in each step of the SBST process is listed.
Each test pattern includes the input and output values of the
switch ports in T consecutive cycles. For the test volume,
we compute the size of the test set in bits. Because the test
patterns of SBST contain the value of the primary inputs in
T cycles as the input pattern and the value of the primary
outputs as the test responses, the test volume of the SBST
test data is computed as follows:

Test volumeSBST = T × (|PIs|+ |POs|)× n (9)

in which |PIs| stands for the number of primary inputs, |POs|
the number of primary outputs, and n refers to the number
of test patterns. The next row reports the test time. Because
every SBST test pattern is generated with regard to T cycles
of the switch operation, the number of clock cycles required
to apply the input patterns and get the responses is T .
Moreover, one additional cycle is needed to reset the flipflop
states before applying the next test pattern. Accordingly, the
test time for applying n test patterns is calculated as follows:

Test timeSBST = n× (T + 1) (10)

To shed some light on the test volume of the SBST
method compared to the conventional test approaches similar
to [2], we applied commercial ATPG with test compression
targeting stuck-at faults in the switch and extracted the result
of the test pattern generation. The number of test patterns
is 135. Any scan test pattern consists of the value of both
primary inputs and the scan registers as input pattern, and
the value of primary outputs and the scan registers as test
response. Thus, the test volume of the scan test data is
computed as:

Test volumescan = (2×|scan cells|+|PIs|+|POs|)×n (11)

in which |scan cells| stands for the number of scan cells (i.e.
flipflops). The test data volume of the scan test is 148770
bits and the test time varies depending on the number of
scan chains in the switch. To achieve a test time comparable
to the presented SBST test time, at least 30 scan chains are
needed.

B. Bridging and Crosstalk Faults
Table III presents the result of SBST targeting bridging

faults in the switch and the links (4-way bridges), and
crosstalk in the communication links. The pairs of suspected
signals for the bridging fault are selected according to [19].
It shows that the SBST pattern generation process with the
initial sequential depth 3 is able to achieve 98.88% fault
coverage with 159 test patterns, resulting in a short test time.
To further increase the fault coverage, the process can be
repeated for larger T .

A crosstalk fault happens where a transition on an aggres-
sor line a causes glitches on a victim line b [18]. In the CLF
model, a crosstalk is represented according to the following
formula, in which a−1 denotes the last value of line a:

bf := b⊕ [(a−1 ⊕ a) · (a⊕ b)] (12)

To investigate the crosstalk effect on the communication
links, pairs of neighboring signal lines on each input port
of the switch are considered as aggressor and victim lines
for the crosstalk model. The last value of the aggressor line
comes from the equivalent literal in the previous copy of
the unrolled switch. For the 8-bit switch, 14 crosstalk faults
are injected in each input port. The last column of Table III
illustrates the SBST pattern generation result which achieves
100% fault coverage at sequential depth 3. Thus, testing all
crosstalk faults in the communication links of the switch
requires 22 test patterns applied in 88 cycles.

TABLE III. SBST Pattern Generation Statistics

Bridging faults
T = 3

Crosstalk
T = 3

Faults 10834 70
Detected faults 10713 70
Undetectable faults 121 (1.11%) 0
Fault coverage (%) 98.88 100

Test patterns 159 22
Test volume (bits) 51516 7128
Test time (cycles) 636 88

The experiments reveal that SBST pattern generation
modeled as a SAT problem is capable to generate test pat-
terns targeting all kind of structural faults in the switches and
the links. By only accessing the primary input and outputs
of the switch, the test time decreases without imposing any
hardware overhead. Besides, as the test patterns are in the
form of NoC packet, the test process can be performed in-
field without putting the system in a non-functional test
mode. This, in turn, eliminates the requirement to restore
the system states after testing. Storage of the test patterns
in the presented SBST method is not a problem, because
only a small portion of memory space in the processing
elements has to be dedicated to that. Since the SBST patterns
target structural faults, the test responses can used to perform
structural diagnosis [3].

VII. CONCLUSION

A Software-Based Self-Test of switches in Networks-on-
Chip was presented. It targets structural faults within NoC
switches and NoC links. In order to conduct the test of
a switch, the processing elements surrounding the switch
under test are reused for test generation and evaluation as
well as test access.

SBST pattern generation is mapped to a Boolean satisfia-
bility problem, and only valid NoC packets are accepted as
satisfying assignments of the model by additional formula.

The conducted experiments for stuck-at, bridging and
crosstalk faults confirm the efficiency of software-based self-
testing in the NoC domain with high fault coverage and
very low test time. The technique does not impose any
hardware overhead to the switch and is applicable for both
manufacturing test and online test.

VIII. ACKNOWLEDGMENT

Part of this work was supported by the German Research
Foundation (DFG) under grant WU 245/12-1 (ROCK).

REFERENCES
[1] C. Grecu, P. Pande, B. Wang, A. Ivanov, and R. Saleh, “Methodologies

and algorithms for testing switch-based NoC interconnects,” in IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT), 2005, pp. 238–246.

[2] A. M. Amory, E. Brião, É. Cota, M. Lubaszewski, and F. G. Moraes,
“A scalable test strategy for network-on-chip routers,” in IEEE Inter-
national Test Conference (ITC), 2005, pp. 1–9.

[3] A. Dalirsani, S. Holst, M. Elm, and H.-J. Wunderlich, “Structural Test
and Diagnosis for Graceful Degradation of NoC Switches,” Journal
of Electronic Testing, vol. 28, no. 6, pp. 831–841, 2012.

[4] P. Maxwell, I. Hartanto, and L. Bentz, “Comparing functional and
structural tests,” in IEEE International Test Conference (ITC), 2000,
pp. 400–407.

[5] A. Kohler, G. Schley, and M. Radetzki, “Fault Tolerant Network
on Chip Switching With Graceful Performance Degradation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29, no. 6, pp. 883–896, 2010.

[6] A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, K.-T. Cheng,
and V. Bertacco, “Comprehensive online defect diagnosis in on-chip
networks,” in IEEE VLSI Test Symposium (VTS), 2012, pp. 44–49.

[7] A. P. Frantz, F. L. Kastensmidt, L. Carro, and E. Cota, “Dependable
network-on-chip router able to simultaneously tolerate soft errors and
crosstalk,” in IEEE International Test Conference (ITC), 2006, pp.
1–9.

[8] S.-Y. Lin, W.-C. Shen, C.-C. Hsu, C.-H. Chao, and A.-Y. Wu,
“Fault-tolerant router with built-in self-test/self-diagnosis and fault-
isolation circuits for 2d-mesh based chip multiprocessor systems,” in
International Symposium on VLSI Design, Automation and Test (VLSI-
DAT), 2009, pp. 72–75.

[9] J. Raik, V. Govind, and R. Ubar, “Design-for-Testability-based Ex-
ternal Test and Diagnosis of Mesh-like Network-on-a-Chips,” IET
computers & digital techniques, vol. 3, no. 5, pp. 476–486, 2009.

[10] N. Karimi, A. Alaghi, M. Sedghi, and Z. Navabi, “Online Network-on-
Chip Switch Fault Detection and Diagnosis Using Functional Switch
Faults,” Journal of Universal Computer Science, vol. 14, no. 22, pp.
3716–3736, 2008.

[11] R. Parikh and V. Bertacco, “uDIREC: unified diagnosis and reconfigu-
ration for frugal bypass of NoC faults,” in Proceedings of IEEE/ACM
International Symposium on Microarchitecture, 2013, pp. 148–159.

[12] L. Chen and S. Dey, “Software-based Self-testing Methodology for
Processor Cores,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 3, pp. 369–380, 2001.

[13] A. Paschalis and D. Gizopoulos, “Effective Software-Based Self-Test
Strategies for On-line Periodic Testing of Embedded Processors,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, no. 1, pp. 88–99, 2005.

[14] F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero, “Fully
automatic test program generation for microprocessor cores,” in
Design, Automation and Test in Europe (DATE), 2003, pp. 1006–
1011.

[15] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
Based Self-Testing of Embedded Processors,” IEEE Transactions on
Computers, vol. 54, no. 4, pp. 461–475, 2005.

[16] J. Zhou and H.-J. Wunderlich, “Software-based self-test of processors
under power constraints,” in Design, Automation and Test in Europe
(DATE), 2006, pp. 430–435.

[17] G. S. Tseitin, “On the Complexity of Derivation in Propositional
Calculus,” Studies in constructive mathematics and mathematical
logic, vol. 2, no. 115-125, pp. 10–13, 1968.

[18] H.-J. Wunderlich, Ed., Models in Hardware Testing. Springer, 2010.
[19] E. N. Tran, V. Kasulasrinivas, and S. Chakravarty, “Silicon evaluation

of logic proximity bridge patterns,” in IEEE VLSI Test Symposium
(VTS), 2006, pp. 1–6.

