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Abstract—Test is an essential task since the early days of digital
circuits. Every produced chip undergoes at least a production
test supported by on-chip test infrastructure to reduce test
cost. Throughout the technology evolution fault tolerance gained
importance and is now necessary in many applications to mitigate
soft errors threatening consistent operation. While a variety of
effective solutions exists to tackle both areas, test and fault
tolerance are often implemented orthogonally, and hence do not
exploit the potential synergies of a combined solution.

The unified architecture presented here facilitates fault tol-
erance and test by combining a checksum of the sequential
state with the ability to flip arbitrary bits. Experimental results
confirm a reduced area overhead compared to a orthogonal
combination of classical test and fault tolerance schemes. In
combination with heuristically generated test sequences the test
application time and test data volume are reduced significantly.

Index Terms—Bit-Flipping Scan, Fault Tolerance, Test, Com-
paction, ATPG, Satisfiability

I. INTRODUCTION

The technology evolution of digital circuits is accompanied
by two main challenges. To assure product quality offline
test is a necessity. Under elevated soft error rates online
fault tolerance constantly monitoring operation is of vital
importance for reliability [1]. These two challenges require
an efficient hardware test to cope with manufacturing defects
as well as fault tolerance to confine transient errors caused by
Single Event Upsets (SEUs) altering the sequential state.

Testing a circuit after production and throughout its lifetime
to prove the presence of manufacturing defects or wearout
effects is one of the most challenging areas in digital circuits.
Testing sequential circuits without additional Design for Test
(DfT) infrastructure is hard to achieve due to the limited
access to the circuit state and the associated high complexity
of sequential automatic test pattern generation (ATPG). The
most widely adopted DfT infrastructure is scan design [2]. It
provides observability and controllability of the circuit state
by replacing sequential elements with scannable counterparts
and grouping them into scan chains that are read and written
sequentially. Nowadays multiple scan chains are used. The
ability to use combinational test sets is paid by additional
area overhead as well as increased test application times and
test data volume. Although solutions like the use of multiple
(shorter) scan chains or on-chip test data (de-)compression and
compaction [3, 4, 5, 6] are able to reduce the test time and
volume, they often substantially increase the area overhead in
addition to the overhead introduced by the scan elements.

An alternative to scan-based DfT infrastructure is Random
Access Scan (RAS) [7, 8]. It arranges the flip-flops of a circuit
in an array providing unique access to read and write single

bits. In [9, 10] a toggle flip-flop is used to invert a bit instead of
writing it. While still incorporating a high area overhead, the
results show that significant savings in test time and volume
are possible if the next test pattern is setup by selectively
updating the captured circuit response.

Fault tolerance can be achieved by time, space or in-
formation redundancy. Due to the non-regular structure of
random logic, most schemes protect the sequential state by
a combination of time and space redundancy. The RAZOR
approach [11] as well as the GRAAL scheme [12] duplicate
each bit to detect SEUs and correct them by restoring the
value from the shadow element. The area overhead inherent
to bitwise duplication and comparison is reduced by using
latches. If present, the scan portion can be reused to implement
the shadow elements, however this implies that it runs at speed.

The work presented here targets the convergence of test and
system reliability solutions by the following contributions:
• A Unified Architecture (Fig. 1) utilizing information and

structural redundancy. Each register Ri is extended with
a checksum computation, a checksum register Ci and a
mechanism to flip individual bits. Thereby enabling

– Fault Tolerance by effectively protecting the sequen-
tial state against SEUs.

– Test Access by observing compacted register states
and controlling arbitrary register bits without the use
of full scan.
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Fig. 1. Presented Unified Architecture

• A heuristic for generating a Bit-Flipping Scan Test
Sequence consisting of test patterns that validate the
compacted sequential circuit state (test response) and
setup the sequential state for the next test pattern with
a minimized amount of bit-flips.

The next two sections detail the architecture and its use for
fault tolerance and test access. Sections IV and V explain how
the Bit-Flipping Scan test sequence generation is modeled as
a satisfiability problem and solved heuristically.
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II. ONLINE FAULT TOLERANCE ARCHITECTURE

The online fault tolerance architecture from [13] is slightly
extended to serve as the foundation for an efficient offline test.
It protects the sequential state stored in registers against SEUs
(Fig. 2). For each register Ri a combination of information
and structural redundancy is employed to derive a resident
checksum and store it in an additional register Ci. SEUs are
detected by a signature Si computed as the difference between
the stored resident checksum and the checksum recomputed
from the register values C ′i. Detected SEUs are localized by
decoding the signature. Finally, the clock is gated and the
affected register bit is corrected in one additional clock cycle
with the help of a sequential standard cell that is inherently
able to invert its internal state. False corrections due to SEUs
in Ci are prevented by a parity of Ci. For offline testing scan
design is added to Ci and the decoder is gated by the scan
enable signal.
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Fig. 2. Fault Tolerance Architecture with Test Extensions

The following subsections discuss the two main underlying
concepts used to implement the fault tolerance: A) The area
efficient error detecting and correcting (EDAC) code compu-
tation of the register content, and B) the efficient correction
of SEUs at bit level employing Bit-Flipping Flip-Flops.

A. Error Detecting and Correcting Code

Let Ri be a register with n bits. Let Ri = [rn, · · · , r1]
T

represent the data word vector in matrix notation where radr
(n ≥ adr ≥ 1) references the bit at address adr. The modulo-2
address characteristic proposed in [14] is defined as the bit-
wise XOR of all addresses where radr = 1. r0 is not used, as
address 0 does not contribute to Ci.

The mapping between data and characteristic bits corre-
sponds to the generator matrix of a Hamming code and can
be expressed by a modulo-2 characteristic matrix M .

M =

[

a
d
r
n

. . .

a
d
r

1

]
It consists of l rows and n columns, where n is the number

of data bits and each column contains the binary address adr
of the associated data bit. The maximum length over all used
addresses defines the size of the calculated characteristic and
depends on n logarithmically:

l = dlog2(n+ 1)e. (1)

The characteristic Ci is computed by multiplying M with Ri:

Ci = M ·Ri.

To detect an error, the characteristic of the original register
content Ri is computed at time tj and stored in an additional
register Ci of size l. We call Ci the resident characteristic.

The recomputed characteristic C ′i is then concurrently de-
rived from the register content Ri until new data is written.
The difference between the resident characteristic Ci and the
recomputed characteristic C ′i is called the signature of Ri:

Si = Ci ⊕ C ′i.

If Si is the all-zero vector no deviation was detected, otherwise
Si contains the address localizing the register bit affected by
a single bit upset (SBU). The characteristic computation can
be efficiently implemented using XOR2 standard cells [15].

Example: Let R1 be a 7-bit register with value
[
1011010

]T
.

Together with the modulo-2 checksum matrix M , the resident
characteristic C1 is computed and stored:

C1 = M ·R1 =

1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

 ·R1 =

1
0
0

 .
Now a SBU affects R1 and flips bit 5, resulting in the
faulty register value R′1 =

[
1001010

]T
. The characteristic

is recomputed as C ′1 and the signature S1 is calculated:

C ′1 = M ·R′1 =

0
0
1

 S1 = C1⊕C ′1 =

1
0
0

⊕
0

0
1

 =

1
0
1

 .
As S1 is not zero the SBU is detected. Moreover S1 contains
the address 5, thereby correctly localizing the SBU.

During offline test the characteristic is used for test response
compaction.

B. Bit Flipping Flip-Flop
Whenever the signature Si is not the zero vector it is

decoded to a n-bit wide correction vector by a 1-out-of-
n decoder. The vector then triggers the correction of the
erroneous register bit while preserving the state of all other
bits.

In contrast to the Bit-Flipping-Latch from [13], the Bit-
Flipping Flip-Flop (Fig. 3) targets an edge-triggered design
style. The master latch consists of two inverters (INV) and
two transmission gates (TG). Both transmission gates are
controlled by the control signal pair {L,L}, selecting whether
a new value is latched or the internal state is preserved.
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Fig. 3. Bit-Flipping Flip-Flop: Schematic

The slave latch contains an additional inverting feedback
loop (TG4, inverter INV3 and TG3) to flip the internal state.
The new control signal pair {HI,HI} for TG2 and TG3
selects either the original or the inverting feedback loop. To



avoid metastability of the inverting feedback loop, the inverter
INV3 is precharged by TG4 if and only if the loop is not active.
Inverting {HI,HI} while the slave latch stores a value feeds
the inverted value of Q to the inverter chain. If the inversion
is canceled the non-inverting loop stores the inverted value.

The Bit-Flipping Flip-Flop can be implemented efficiently
as a standard cell similar to the bit-flipping latch in [13].

III. OFFLINE TEST ACCESS ARCHITECTURE

The unified architecture is now used for test access to
observe and control the sequential circuit state. Therefor the
characteristic registers are equipped with scan design and the
scan enable signal is used to gate the decoders (Fig. 2). Instead
of directly observing the register content Ri in n cycles,
the compacted characteristic in register Ci is observed in l
cycles. To control Ri the bit-flipping capability inherent to the
fault tolerance architecture is reused: Bit-flips are triggered at
desired positions by shifting an appropriate characteristic into
Ci. The efficiency of the accomplished test access depends on
the ratio between n and l as well as the amount of bit-flips.

A. Observing a Test Response
After setting up the stimulus for a test pattern p, the circuit

response is captured into the internal registers R. In order to
validate if the test pattern passed or failed the test response
must be observed. The fault tolerance infrastructure already
computes the resident characteristic of each Ri and stores it
in the additional register Ci (Fig. 2). Instead of observing
the captured response in Ri in n shift cycles, Ci is made
scannable and the compacted circuit response is observed in l
shift cycles, where l� n (Eq. 1).

The value of Ci depends on all bits of register Ri and
represents a compacted version of the register content. It has
the same properties as a response generated by a dedicated
response compactor but reuses existing infrastructure. The
characteristic has the same aliasing probability than other
SECDED Hamming Codes [14]. It follows, that the com-
paction quality of Bit-Flipping Scan is comparable to methods
like X-Compact [5] or EDT [3].

B. Controlling a Register by Bit-Flipping
A mechanism to flip single bits of a register Ri is present in

the architecture to correct SBUs in the fault tolerance mode.
Now, this feature is used to setup the next state of register
Ri by a series of bit-flips. For each pattern and bit-flip only l
bits need to be shifted in, thereby reducing the complexity of
the shift operation logarithmically from O(n) to O(log2(n))
(Eq. 1). Fig. 2 shows the involved architecture parts.

Let p1 and p2 be two test patterns, let O(Ri, p1) denote the
state of register Ri after the capture cycle of p1 with both
characteristics Ci, C

′
i being equal and let I(Ri, p2) denote

the state of Ri needed to setup p2. Assume without loss of
generality, that I(Ri, p2) and O(Ri, p1) differ in exactly one
bit at address adr b (1 ≤ adr b ≤ n), and their Hamming
distance is one. Then, the desired register value can be deduced
by a single flip of the bit at adr b.

To trigger a bit-flip at this address the signature Si needs
to encode adr b: Si = adr b. As the register state after p1

and the associated recomputed characteristic C ′i are known,

the resident characteristic Ci is computed as: Ci = Si ⊕ C ′i.
Scanning in Ci triggers a bit-flip at adr b, generating I(Ri, p2)
from O(Ri, p1) with l shift cycles and one additional cycle
for the bit-flipping. At the same time, the compacted register
state Ci is scanned out and observed. If the Hamming distance
between the two register states is larger than one, a series of
single bit-flips is used.

C. Efficient Test Access

In traditional scan design the test application time depends
on the maximum scan chain length n and the number of
patterns. To apply a single pattern p2 the captured response
O(Ri, p1) of the previous pattern p1 is scanned out in n
cycles while the desired state I(Ri, p2) for p2 is shifted
in concurrently. Then the circuit state is captured in one
additional cycle: TATS = n+ 1.

For the presented Bit-Flipping Scan scheme, the test time is
dominated by the number of bit-flips bf . For each flip, l shift
cycles and one flip cycle are needed. After applying all flips
the circuit state is captured: TATBFS = bf · (l + 1) + 1.

Bit-Flipping Scan results in short test times. Formally, the
maximum number of bit-flips at which both schemes have the
same test time is defined by

TATBFS ≤ TATS ⇔ bf · (l + 1) + 1 ≤ n+ 1

⇔ bf ≤ n

l + 1
⇔ bf ≤ n

dlog2(n+ 1)e+ 1

Example: For a maximum register size respectively scan
chain length of 127 it follows that Bit-Flipping Scan has a
lower test time if 15 or less flips per register and pattern are
required (bf ≤ 15.875).

Bit-Flipping Scan facilitates efficient test access by a log-
arithmic scan chain length reduction and altered scan chain
semantics. Without loss of generality, classical test data (de-
)compression and compaction schemes can be utilized to
further improve test efficiency. The next sections show how
the generation of optimized Bit-Flipping Scan test sequences
is modeled and solved heuristically.

IV. MODELING THE TEST SEQUENCE GENERATION

While in principle any test set can be applied using the test
access provided by the unified architecture it is very likely
to result in a suboptimal test time and volume due to a high
number of involved bit-flips. The goal of efficiently utilizing
the unified architecture for offline test is achieved by a tailored
sequence of test patterns. After defining the properties of
an globally optimal test sequence the reduction of sequential
ATPG under bit-flips to a Boolean satisfiability problem and
its modeling in conjunctive normal form (CNF) is discussed.

For a circuit C with a set of faults F , an optimal Bit-
Flipping Scan test sequence Popt ensures that
• all faults f in the fault universe F are detected by Popt
• the number of bit-flips to setup a register Ri for pattern
pj from the previous register state O(Ri, pj−1) is bound
by HammingDist(O(Ri, pj−1), I(Ri, pj)) ≤ bf bound

• the length of Popt is minimal.



A. Circuit Modeling

A combinational representation CC of C is built by re-
moving all sequential elements and adding pseudo-primary
in- and outputs (PPI/PPO). Each gate gi ∈ CC is then
represented in CNF using the Tseitin encoding which gen-
erates a linear number of clauses at the cost of introducing
a linear number of new variables [16]. Each gate gi with
inputs i1, · · · , in and output o implementing a Boolean func-
tion o = φg (i1, · · · , in) is logically equivalent to Φg =

(o ∨ φg (i1, · · · , in)) ∧
(
φg (i1, · · · , in) ∨ o

)
. Expanding the

equation in a product-of-sums form yields the set of clauses
Φg in CNF. The circuit CC is then described in CNF as

ΦCC
=

∧
gi∈CC

Φgi .

B. Modeling of Stuck-At Faults

Each stuck-at fault in F is represented as a new free literal
f . The faulty circuit Φc′f is modeled by copying the output
cone cf of the fault site sf and assigning new literals to the
fault location and all other signals in the fault cone c′f (s′f for
sf and ∀sn ∈ cf : s′n). At the edge of the cone the according
literals from ΦCC

are used. To generate a test pattern for f
with polarity pf ∈ {0, 1} three conditions need to hold:

• Fault-free circuit: Fault site has the correct value: sf = pf
• Faulty circuit: Fault site has the faulty value: s′f = pf
• f is observed at least at one output:
obsf =

∨
∀(o,o′)∈(cf ,c′f )(o⊕ o′) .

Then fault f is modeled as

Φf = Φc′f ∧
(
f ∨ (sf = pf ) ∨ (s′f = pf ) ∨ (obsf )

)
∧

(f ∨ (sf = pf )) ∧ (f ∨ (s′f = pf )) ∧ (f ∨ obsf ) .

C. Sequential Mapping and Modeling of Bit-Flips

The sequential behavior of CS is modeled by unrolling.
Each timeframe tj is modeled by ΦCC ,tj consisting of a copy
of ΦCC

with appropriate literal renaming and Φf,tj denotes
fault f in timeframe tj .

Bit-Flips are modeled by introducing new free literals
B(Ri, tj) for each register Ri. Together with the pseudo-
primary output literals O(Ri, tj−1) of the previous timeframe
the sequential state in timeframe tj is modeled:

ΦBtj−1,tj =
∧

∀Ri∈CS

(O(Ri, tj−1)⊕B(Ri, tj) = I(Ri, tj)) .

The sequential behavior under bit-flips is modeled as ΦB =
∧x∀j=1(ΦBtj−1,tj ). The number of bit-flips per register and
timeframe is restricted by a cardinality constraint allowing
’atmost’ bf bound flip literals per register and timeframe to be
true:

ΦBcard
tj−1,tj =

∧
∀Ri∈CS

atmost(B(Ri, tj), bf bound) .

D. Optimal Test Sequence Popt
The SAT instance for the optimal test sequence Popt from

the beginning of this section can now be modeled as follows.
The circuit is unrolled for x timeframes: ΦCC

= ΦCC ,t1 ∧
· · · ∧ ΦCC ,tx . All faults are added to each timeframe. As
it is sufficient to detect a fault once, a disjunction over
all timeframes is added per fault: ΦF = (∧∀tj∀fΦf,tj ) ∧
(∧∀f (∨∀tj (f(tj)))). Between consecutive timeframes, bit-flip
cardinality constraints are added to limit the maximum number
of flips per register: ΦBcard

= ∧x∀j=1(ΦBcard
tj−1,tj ). The literals of

timeframe 0 are set to the registers initialization values: Φ0.
Solving the model Φopt = ΦCC

∧ΦF ∧ΦB ∧ΦBcard
∧Φ0

yields a solution for x timeframes if it exists. The assignment
of literals associated with primary in- and outputs in each
timeframe ti corresponds to a pattern pi. The generated
sequence detects all faults in F with at most bf bound bit-flips
per pattern (Sec. III-B). The test sequence Popt with minimum
length is found by bisection over the number of timeframes.

Finding the globally optimal test sequence is only feasible
for small circuits, small fault universes and a limited number
of timeframes due to the high complexity of ATPG and
the associated runtimes [17]. Nonetheless an optimized Bit-
Flipping Scan test sequence can be generated iteratively as
depicted in the next section.

V. BIT-FLIPPING SCAN TEST SEQUENCE GENERATION

The heuristic iteratively generates patterns of the test se-
quence for combinationally detectable faults from the fault
universe F , where each pattern p targets a limited number of
not detected faults Fnd. All patterns are guaranteed to require
a minimal number of bit-flips while covering the maximum
amount of faults from Fnd. As a preprocessing step, F is
classified by combinational ATPG and undetectable faults are
removed. The remaining faults are sorted in descending order
according to their testability, thereby putting preference on
hard to detect faults in the iterative pattern generation.

The heuristic depicted in pseudocode in Algorithm 1 is
invoked with the initialization pattern p0, the fault universe
F and the number of concurrently targeted faults maxF .

First, the SAT-model Φ (l. 4) is built modeling one time-
frame of the combinational circuit (ΦCC

), the limited number
of faults contained in Fnd, the bit-flips associated to the PPIs
ΦB as well as cardinality constraint ΦBnumBF

restricting the
number of flips per register to numBF .

The for-loop (l. 6-14) searches for a pattern pj covering a
maximum number of faults numF from Fnd. In each iteration,
for a given number of faults, a cardinality constraint is added to
detect at least numF faults: ΦnumF = atleast(Fnd, numF ).
If the model is satisfiable under the current sequential state
Φpj−1

, pattern pj is extracted and the loop continues with an
increased numF . Once the model is not satisfiable, two cases
need to be distinguished:
• A pattern was found in an earlier iteration (l. 15): The

current iteration proves that no pattern covering more
faults from Fnd exists. The list of currently modeled
faults Fnd and the global fault list F are pruned by fault
simulation of p, pj is added to the pattern sequence P and
the bit-flip constraint ΦnumBF is reset (l. 16-18). If more



Algorithm 1 Iterative Bit-Flipping Scan ATPG
1: function GENERATEBFSPATTERNS(p0, F,maxF )
2: Fnd ← getND(F,maxF ) . maxF not det. faults
3: P ← ∅ ∪ p0; j ← 1; numBF ← 1 . init, 1 BF per Reg.
4: Φ← ΦCC ∧ ΦFnd ∧ ΦB ∧ ΦBnumBF . model
5: while F 6= ∅ do
6: for numF ← 1,maxF do . cover max. faults
7: update(Φ,ΦnumF ) . add cardinality constraint
8: SAT ← solve(Φ,Φpj−1) . under seq. state of pj−1

9: if SAT then
10: pj ← extractPattern(Φ); pFound← true
11: else
12: break for-loop . (line 6)
13: end if
14: end for
15: if pFound then
16: F ← fsim(pj , F ); Fnd ← fsim(pj , Fnd) . prune
17: P ← P ∪ pj ; j ← j + 1; pFound← false . add p
18: numBF ← 1; update(Φ,ΦnumBF ) . reset
19: if |Fnd| < 0.9 ·maxF then . update faults
20: Fnd ← getND(F,maxF ); update(Φ,ΦFnd)
21: end if
22: else . no p under numBF
23: numBF ← numBF + 1; update(Φ,ΦBnumBF )
24: end if
25: end while
26: return P
27: end function

than 10% of the faults contained in Fnd are detected, the
model is rebuilt with the next maxF faults (l. 20).

• No pattern was found at all (l. 22): The iteration proves
that no pattern detecting even a single fault exists under
the constrained amount of bit-flips. numBF is increased
and the for-loop is re-executed, thereby ensuring that the
next pattern detects the maximum amount of modeled
faults under the increased number of bit-flips.

The surrounding while loop (l. 5-25) terminates when all
faults from F are detected. As F contains only combination-
ally detectable faults each fault in F will be detected, in the
last resort by a pattern requiring a high amount of bit-flips.

VI. EXPERIMENTAL EVALUATION

The presented scheme is evaluated for ISCAS89 and ITC99
benchmarks as well as for industrial circuits kindly provided
by NXP (formerly Philips). For each circuit, the combinational
core is synthesized for the 45 nm Nangate Open Cell Library
(OCL) [18] using one- and two-input gates.

Four different scenarios are analyzed:
a) Original: D-Flip-Flops (DFF, 4.522µm2).
b) Scan Design: Scannable D-FFs (SDFFR, 6.916µm2).
c) Fault Tolerance + Scan Design (FTScan): Scannable

D-Flip-Flops together with a fault tolerance scheme
comparable to RAZOR [11] or GRAAL [12]: A shadow
latch (DLH, 2.926µm2), an exclusive OR (XOR2,
1.596µm2) and a multiplexer (MUX2, 1.862µm2).

d) Bit-Flipping Scan (BFScan): Bit-Flipping Flip-Flops im-
plemented as a new OCL-compatible standard cell (BFF,
5.054µm2) combined with the characteristic compu-
tation and the signature decoder as well as scannable
characteristic registers (SDFFR, 6.916µm2).

For b) and c), all FFs are organized into scan chains with a
maximum length of 127. For d), a register is implemented for
each chain from the scan chain configuration used in b) and
c). Note, that a chain length of 127 is rather short. For longer
chains, scenarios b) and c) will scale linear in terms of area
and test time. The area of the unified architecture and the test
time of Bit-Flipping Scan sequences will grow slower due to
the logarithmic correlation between n and l (Eq. 1).

A. Area Overhead

The gate area of the synthesized original circuit in µm2 is
used as a baseline in Table I, corresponding gate counts can
be found in columns 2 & 3 of Table II. The implementation of
scan design increases the area (col. 3) and the area overhead to
the original circuit is between 4.3% and 24.7% (col. 4). Imple-
menting fault tolerance by bitwise redundancy orthogonal to
scan design further increases the area (cols. 5 & 6). The area
associated with the presented unified architecture (col. 7) is
moderate for all circuits with an overhead between 21.7% and
81.8% (col. 8). The last column depicts the difference between
the overheads of BFScan (col. 8) and FTScan (col. 6).

The results show, that compared to an orthogonal combi-
nation of the two classical methods, the unified architecture
targeting both test and fault tolerance uses less area.

B. Test Application Time

Table II compares the test application times. A highly
compacted test set is generated for each FTScan configuration
using a commercial ATPG. The heuristic from Section V is
used to generate BFScan test sequences, where maxF was
set to 100, providing a good tradeoff between runtime and
achieved test time.

The total number of clock cycles for Bit-Flipping Scan is
significantly lower compared to FTScan (col. 12 & 7) although
the BFScan test sequence contains more patterns (cols. 8 & 4).
Instead of n shift cycles only dlog2(n + 1)e cycles are used
per pattern and bit-flip, allowing to apply more patterns in

TABLE I
AREA OVERHEAD FOR A MAX. CHAIN LENGTH/REGISTER SIZE OF 127

Original Scan Design FT + Scan Bit-Flipping Scan Area

Circuit (DFF) (SDFFR) OH (SDFFR) OH (BFFF) OH ∆OH
name µm2 µm2 +% µm2 +% µm2 +% +%
(1) (2) (3) (4) (5) (6) (7) (8) (8)-(6)

s35932 13461 16781 24.7 28946 115.0 24469 81.8 -33.3
s38417 14444 17883 23.8 29364 103.3 24344 68.5 -34.8
s38584 15744 18433 17.1 28582 81.5 24410 55.0 -26.5
b14 5252 5553 5.7 7390 40.7 6531 24.3 -16.3
b17 27606 30140 9.2 40096 45.2 36276 31.4 -13.8
b20 11048 11541 4.5 15016 35.9 13469 21.9 -14.0
b22 16531 17241 4.3 22740 37.6 20117 21.7 -15.9
p35k 27566 31971 16.0 45927 66.6 39649 43.8 -22.8
p45k 29346 33759 15.0 50125 70.8 43465 48.1 -22.7
p78k 57561 64935 12.8 83116 44.4 73647 27.9 -16.5
p100k 71177 82250 15.6 121278 70.4 104517 46.8 -23.5
p141k 128672 148146 15.1 220212 71.1 189140 47.0 -24.1
p239k 209954 243963 16.2 373044 77.7 317872 51.4 -26.3
p259k 246661 279568 13.3 419886 70.2 361851 46.7 -23.5
p267k 177598 210587 18.6 325096 83.1 276449 55.7 -27.4
p269k 177753 210564 18.5 325139 82.9 276912 55.8 -27.1
p279k 207302 240778 16.1 363884 75.5 311310 50.2 -25.4
p295k 211510 245279 16.0 372464 76.1 322304 52.4 -23.7
p330k 210958 244121 15.7 357882 69.6 308389 46.2 -23.5
p378k 287773 324514 12.8 413825 43.8 365445 27.0 -16.8
p418k 317313 371812 17.2 570179 79.7 489276 54.2 -25.5



TABLE II
TEST APPLICATION TIME (TAT) AND TEST DATA VOLUME (TDV) FOR A MAXIMUM CHAIN LENGTH/REGISTER SIZE OF 127

Circuit Test Application Time Test Data Volume

Gates Fault Tolerance + Scan Design Bit-Flipping Scan TAT TDV

Comb. Seq. Pat. Capture Scan Sum Pat. Capture Flip Scan Sum Speedup FTScan BFScan Reduction
name count count count cycles cycles cycles count cycles cycles cycles cycles ratio bits bits %
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

s35932 16065 1728 50 50 6477 6527 115 115 114 805 1034 6.31 190550 63365 66.75
s38417 23861 1636 150 150 19177 19327 711 711 716 5013 6440 3.00 510900 224531 56.05
s38584 21938 1452 173 173 22098 22271 618 618 626 4389 5633 3.95 550672 281761 48.83
b14 10681 245 565 565 71882 72447 1293 1293 1948 12300 15541 4.66 325440 148259 54.44
b17 35482 1415 661 661 84074 84735 2735 2735 3952 27437 34124 2.48 1959204 812364 58.54
b20 21599 490 568 568 72263 72831 2043 2043 2756 18730 23529 3.10 587312 229981 60.84
b22 32090 735 528 528 67183 67711 2095 2095 2558 17732 22385 3.02 804672 294639 63.38
p35k 41443 2173 1068 1068 135763 136831 2726 2726 2883 20165 25774 5.31 5490588 2838510 48.30
p45k 38811 2331 2100 2100 266827 268927 3069 3069 3216 22504 28789 9.34 13206900 5799212 56.09
p78k 68263 2977 94 94 12065 12159 124 124 123 868 1115 10.90 623408 125488 79.87
p100k 84356 5735 2050 2050 260477 262527 4356 4356 5483 38369 48208 5.45 24048550 3816114 84.13
p141k 152808 10501 612 612 77851 78463 1620 1620 1621 11354 14595 5.38 13336704 3162100 76.29
p239k 224597 18382 517 517 65786 66303 1663 1663 1668 11683 15014 4.42 19225490 4070658 78.83
p259k 298796 18398 672 672 85471 86143 2218 2218 2218 15533 19969 4.31 25003776 5415952 78.34
p267k 238697 16528 724 724 92075 92799 2834 2834 2841 19901 25576 3.63 24581972 7726117 68.57
p269k 239771 16528 726 726 92329 93055 2891 2891 2896 20279 26066 3.57 24650604 7883099 68.02
p279k 257736 17524 780 780 99187 99967 2912 2912 2911 20384 26207 3.81 28002402 8109920 71.04
p295k 249747 18465 1579 1579 200660 202239 6615 6615 6614 46305 59534 3.40 58468791 14162715 75.78
p330k 312666 16775 1752 1752 222631 224383 5071 5071 5075 35532 45678 4.91 62157456 19187520 69.13
p378k 341315 14885 87 87 11176 11263 234 234 233 1638 2105 5.35 2884224 1177020 59.19
p418k 382633 28616 875 875 111252 112127 3526 3526 3527 24696 31749 3.53 52707802 21747326 58.74

shorter time. Thus a raised coverage of non-target faults could
be achieved, but needs to be investigated further.

The results show, that Bit-Flipping Scan results in a test
application time speedup of 2.48X in the worst and up to
10.9X in the best case (col. 13).

C. Test Data Volume
The reported test data volume includes all bits exchanged

with the circuit over primary and pseudo-primary in- and
outputs. The test volume of Bit-Flipping Scan is lower for
all circuits (col. 15 & 14). Column 16 depicts the achieved
test volume reduction. For s35932, the test volume of BFScan
is just 33.25% of the original volume. Thus Bit-Flipping Scan
reduced the original volume by 66.75%.

The results show, that Bit-Flipping Scan reduces the test
volume by between 48.3% and 84.13% of the original test
volume (col. 16).

VII. CONCLUSION

A unified architecture was presented that can be used for
fault tolerance and offline test. It combines a checksum of the
sequential circuit state with the ability to flip arbitrary bits. In
fault tolerance, Single Event Upsets affecting the sequential
elements are detected and located. A correction is performed
in one additional clock cycle. In test, compacted test responses
are observed and bit-flipping is used to derive the next test pat-
tern from the captured state. The experimental results confirm
a reduced area overhead due to the integrated consideration of
fault tolerance and test. The presented test sequence generation
heuristic successfully exploits the architectures capabilities and
results in a significant reduction of test application time and
test data volume.
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