
On Covering Structural Defects in NoCs by
Functional Tests

Atefe Dalirsani, Nadereh Hatami, Michael E. Imhof, Marcus Eggenberger, Gert Schley,
Martin Radetzki, Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Germany
{dalirsani, hatami, imhof, eggenbms, schley, radetzki, wu}@informatik.uni-stuttgart.de

Abstract—Structural tests provide high defect coverage by
considering the low-level circuit details. Functional test provides
a faster test with reduced test patterns and does not imply
additional hardware overhead. However, it lacks a quantitative
measure of structural fault coverage. This paper fills this gap by
presenting a satisfiability based method to generate functional
test patterns while considering structural faults. The method
targets NoC switches and links, and it is independent of the
switch structure and the network topology. It can be applied for
any structural fault type as it relies on a generalized structural
fault model.

Index Terms—Network-on-Chip (NoC), Functional Test, Func-
tional Failure Modeling, Fault Classification, Boolean Satisfiabil-
ity (SAT)

I. INTRODUCTION

Network-on-Chips (NoCs) constitute the interconnection
infrastructure of today’s massively parallel many-core archi-
tectures. As silicon technologies continuously shrink, NoCs
like other hardware devices become increasingly vulnerable
to process and runtime variations [1]. Variability results in
complex structural faults which can lead to unpredictable
errors. A single fault in the NoC may cause packets to be
dropped or become corrupted, resulting in incoherent and
erroneous traffic, ultimately causing the entire chip to fail [2].

While structural testing targets certain structural fault mod-
els and tries to prove the absence of these faults, functional
testing validates some specified functionalities. Due to com-
plexity reasons, this is inherently incomplete, and fault simu-
lation shows usually a rather limited fault coverage obtained
by functional test strategies [3, 4]. Yet functional testing has
still some benefits over a structural test as it does not need a
separate test mode, it can be applied in system speed and it
may even detect faults not covered otherwise [5–7].

The goal of the paper at hand is to combine the benefits of
structural and functional test of NoCs. It presents an automated
approach to generate functional test patterns with high struc-
tural fault coverage. Functional test patterns can be applied
during the normal operation of a switch interleaving the
normal traffic. The conditional line flip (CLF), as introduced
in [8], is used to specify any type of structural faults. A formal
satisfiability-based (SAT) approach classifies structural faults
into functional failure classes. Fault classification is specially
useful to extend the functional failure classes, so that the
structural fault coverage of the corresponding functional test

increases. It determines which structural faults cause a certain
functional failure. Besides, it provides a weighted functional
failure classification with respect to the number of structural
faults in each class. The method includes four tasks:

1) Definition of functionalities of an NoC switch, and
formalization of the corresponding failure modes.

2) Mapping the failure modes to the switch structure in the
form of clauses. This allows test generation by modern
satisfiability solvers (SAT).

3) Modeling structural faults (not just stuck-at faults) by
clauses and adding these clauses to the failure mode
description.

4) Solving the SAT problem allows now to generate data
input for the functional test and to quantify the structural
faults covered by each of the functional failure modes.

The outcome of this method is functional data packets for
the switches and links which can be applied in system mode
and form highly effective test sequences. The experimental
results show that functional tests generated this way achieve a
significantly higher fault coverage than the ones obtained by
commercial sequential ATPG tools.

The paper is organized as follows: The next section starts
with a brief outlook of state of the art in functional NoC
testing. It then explains how functional failures are modeled
and gives an overview of the classification and test generation
method. Section III discusses the structural fault injection
procedure while section IV provides a formal modeling for
functional failure modes. Section V describes the fault classi-
fication approach which is used in section VI to describe the
functional test pattern generation method. The experimental
results are discussed in section VII.

II. BASICS OF FUNCTIONAL NOC TESTING

A. State of the Art

So far, functional NoC test approaches [9–13] do not
explicitly consider structural faults, which results in a lower
fault coverage compared to structural tests. Aisopos et al.
[14] propose a modeling of variation-induced faults in NoCs
to study the impact of delay faults at the system level. In
[15], a software-based self-test approach generates test patterns
targeting structural faults where the switch under test still must
go to the test mode.



The correlation of structural faults to high level faults of
an NoC has a key role in the success of a functional test
methodology [16]. For this reason, functional failure modes
must be carefully defined. The next subsection describes the
failure modes analyzed in this paper.

B. Functional Failure Modes for NoC Switches

The specification of an NoC switch implies the following
functionalities:

• The received data is routed via the correct output port.
• The data is left intact.
• No data is lost.
• No new data is generated.

Accordingly, the functional failure modes of an NoC switch
are defined as:

• Misrouting: The received packet is routed to the wrong
output port. This fault may cause deadlock in the network.

• Data corruption: The data is corrupted for at least one flit
in the packet.

• Packet/flit loss: At least one flit of the received packet is
never delivered to the output port of the switch.

• Garbage packet/flit: A new packet/flit is generated and
routed to the output port. This includes routing a received
packet to more than one output port, or generating
spurious flits among the flits of a packet.

C. Method Overview

In order to classify and weight the failure modes and
additionally generate the corresponding functional test, models
have to be generated which include the fault free switch, the
faulty instance and the functional failure modes (Fig. 1).

Fault free switch 

instance

Faulty switch 

instance

Functional failure 

description

SAT instance

Functional 

inputs
Fault classification

Functional test pattern 

generation

Fig. 1: Overview of the fault classification and test generation method

Functional failures evolve over multiple cycles, and a se-
quential approach like bounded model checking [17] is a
promising option. However, for complexity reasons, it is more
attractive to unroll the switch for the number of cycles,
namely T , in which the functional failure may affect its
behavior. The maximum number of cycles is equal to the
sequential depth of the circuit [18]. The faulty instance is
a copy of the switch including the literals for the injected
structural fault. Modeling the circuit and its faulty instance is
the principle of many SAT-based ATPG approaches [19, 20].
According to the target functional failure, appropriate clauses
for checking the functional mismatch between the good and
faulty copy are added to the model. After obtaining the model,

the classification algorithm iteratively searches for a primary
input assignment such that the injected structural fault causes
the target functional failure. The satisfying assignment is used
as a functional test pattern as described in section VI. For
the unclassified faults, new functional failure classes may be
required.

Before discussing the functional failure models in detail, the
structural fault injection is summarized in the next section.

III. STRUCTURAL FAULT INJECTION MECHANISM

As the switch is a sequential circuit, the fault has to be
propagated through the internal states before it can eventually
be observed at primary outputs. Hence, the corresponding test
response to a functional test pattern must be considered in
multiple consecutive cycles.

Toward this, we apply the standard technique of time-
frame expansion [3] for switches. This technique transports
the circuit’s sequential behavior from the time to the space
domain. The combinational core of the structural switch is
extracted by removing the flipflops. Input and output signals
of the flipflops are then replaced by pseudo primary output
(PPO) and input (PPI) ports. The combinational core of the
switch, Φc, is transformed to a conjunctive normal form (CNF)
using the Tseitin transformation [21]. The sequential behavior
of the switch, ΦT

s , is modeled by time-frame expansion of Φc,
as in [15]. The literals of the PPIs of each copy are connected
to the literals of the PPOs of the previous copy in the SAT
instance, as shown in Fig. 2.

PI1

PPI1

PO1

PPO1

PI2

PPI2

PO2

PPO2

PIT

PPIT

POT

PPOT

...
1

c


2

c


T

c


Fig. 2: The time-frame expansion model of an NoC switch [15]

As we do not want to restrict the methodology to a specific
structural fault model, the general calculus of conditional line
flips (CLF) is used as introduced in [8]. Accordingly, to inject
the fault at fault location lt, the faulty line, lft , is defined by
a flip of signal lt in the good copy, if the condition holds:

lft := lt ⊕ dt

where dt is the condition literal at cycle t. It has been
shown that the CLF calculus can describe any complex digital
fault model like delay faults, crosstalk and bridges [8]. The
condition is defined as a function over time to describe the
arbitrary nature of defects. In our model, dt is a variable that
can be freely assigned by the SAT-solver. Since the structural
fault exists in all cycles of the unrolled circuit, the CLF
clauses are defined for all the copies. With this modeling, the
SAT solver searches for all possible assignments for dt over
time (i.e. all possible structural defects) that cause a certain



functional failure:
T∧

t=1

(lft ← lt ⊕ dt)

However, it is sufficient to detect a CLF in a single time-
frame. In addition, dt can be restricted with respect to a target
structural fault. For example, stuck-at-1 on literal l can be
modeled in CLF as lf := l ⊕ l̄, which is enforced by setting
dt := l̄t.

The faulty instance (Φf,T
SF ) for the structural fault f is built

from the output cone (also known as downstream logic) of the
faulty literals (Φf,T

s ) and the CLF clauses for all copies:

Φf,T
SF = Φf,T

s ∧
T∧

t=1

(lft ← lt ⊕ dt)

As the effect of a fault may be latent through several cycles
before appearing at the primary outputs, Φf,T

SF should be able
to model fault propagation at different cycles. Therefore, the
fault appearance at PPOs (PPOs are in the output cone of the
faulty literal) is also considered. If the fault appears at PPOs
of the faulty output cone at cycle t, the equivalent input cone
at cycle t + 1 is also added to Φf,T

SF .

IV. MODELING FUNCTIONAL FAILURE MODES

A. Modeling Approach

In this subsection, the functional failures introduced in
section II are defined in a more formal way. We set

• In: Set of possible input vectors of n bits,
• C(i): Functional circuit response for input vector i,
• Cf (i): Functional circuit response under fault f for input

vector i,
• fin(i): Boolean formula that defines functional input

constraints,
• fout(C(i), Cf (i)): Boolean formula that defines the func-

tional mismatch.

A fault f is functionally testable if and only if:

∃i ∈ In : fin(i) ∧ fout(C(i), Cf (i)).

In general, a functional failure is defined by an input
characteristic function (fin), an output characteristic function
(fout), and T , the number of cycles in which the functional
failure is active. The corresponding SAT instance, ΦT

FF , is a
conjunction of the clauses of the input and output characteristic
functions, represented in conjunctive normal form (CNF):

ΦT
FF = CNF (fin) ∧ CNF (fout).

Each NoC switch consists of a number of switch ports
(input/output) through which the switch communicates to its
neighboring switches or a network interface. The functional
failure can be individually defined for each switch port. In
the following, the input and output characteristic functions

dout

din

NoC Switch 

Douti

HSouti

HSini

send

buffer_full

...

Handshake 

signals

Handshake 

signals

Dini

Switch port i

Fig. 3: Switch interfaces

are discussed in detail. Fig. 3 illustrates the underlying switch
structure and the involved signals.

A functional test pattern must fulfill the circuit input speci-
fication in the functional mode, for instance the input must be
a well-formatted packet. The input characteristic function, fin,
is a function of the primary inputs of the switch and specifies
the input constraints for the duration of T . Input signals of
the switch ports include data lines and handshake controlling
signals. Hence, fin is defined over all switch ports as:

fin =
∧

j∈Ports

f(Dinj,t, HSinj,t)

where Dinj,t and HSinj,t are the data inputs and handshake
signals of the port j at cycle t. In the operational mode,
an NoC switch receives just inputs in the form of an NoC
packet. According to the packet specification, fin is defined as
a Boolean function over the data inputs to guarantee the valid
packet format. For example, if a packet starts with a head flit
and ends with a tail and the number of flits per packet is given
by parameter fpp, fin is defined as:

∧
j∈Ports

T−fpp+1∧
t=1

(Dinj,t = head)⇔ (Dinj,t+fpp−1 = tail).

If the packet is protected with error detection/correction
codes, this constraint should also be defined here. For example,
if the first bit of the input data, Dinj,t[0], is the parity bit for
the Dinj,t[1..(k− 1)], where k is the number of data bits, the
following Boolean formula should also be added to fin:

Dinj,t[0] = Dinj,t[1]⊕Dinj,t[2]⊕ . . .⊕Dinj,t[k − 1].

Output signals of the switch port include data lines and
handshake signals (Fig. 3). The output characteristic function,
fout, describes a functional mismatch between the outputs in
the good and faulty switch. For the switch ports j ∈ Ports:

fout =
∨

j∈Ports

f(Doutj,t, Doutfj,t, HSoutj,t, HSoutfj,t)

For t ∈ T , the data lines are denoted by Doutj,t and HSoutj,t
standing for the handshake signals of the switch port j in the
good copy of the switch. Throughout the paper, for any set
of signals X of the good copy, Xf denotes the corresponding
signals in the faulty copy.



For example, for a simple switch with a send signal for
handshake, considering data corruption as the target functional
failure, the output characteristic function is defined as:

fout =
∨

j∈Ports

T∨
t=1

(Doutj,t 6= Doutfj,t) ∧ (sendj,t ∧ sendfj,t)

where sendj,t is the send signal of the port j.

B. Example: Misrouting

Assume a simple switch with send as the handshake signal.
The send signal is set, whenever a valid flit is sent out from
the switch port. To model misrouting as the functional failure,
the output characteristic function is defined as:

1) The send signal in the good copy is not from the same
port as the send signal in the faulty copy. In other words,
the packet is sent via a wrong port:

∨
e,i∈Ports,

e6=i

T∧
t=ch

(sende,t∧sendfe,t)∧(sendi,t∧send
f

i,t) (1)

where ch = T − fpp + 1 enforces the condition to be
hold for the length of the packet.

2) The data is intact:∨
e,i∈Ports,

e 6=i

T∧
t=ch

(datai,t = datafe,t) (2)

where datai,t is the data sent by the good copy of the
switch.

The output characteristic function for misrouting will be:

fout = (1) ∧ (2)

C. Functional Failure Injection

Throughout this paper, we use the six functional failure
classes introduced in section II. For T being the number of
unrolled copies in the SAT instance, the output characteristic
functions (fout) are defined by the equations presented in
Table I. In the equations, sendi,t and datai,t respectively refer
to the send signal and data outputs corresponding to the port
i at the cycle t in the good copy of the switch.

Functional Failure fout

Misrouting As described in section IV-B

Data corruption
∨

i∈Ports
∨T

t=1(datai,t 6= datafi,t)

∧(sendi,t ∧ sendfi,t)

Flit loss
∨

i∈Ports
∨T

t=1(sendi,t ∧ sendfi,t)

Packet loss Flit loss holds for the packet length

Garbage flit
∨

i∈Ports
∨T

t=1(sendi,t ∧ sendfi,t)

Garbage packet Garbage flit holds for the packet length

TABLE I: Output characteristics of the Functional Failure Modes

So far, we have generated the CNFs of the sequential
switch ΦT

s , the faulty instance Φf,T
SF describing the structural

fault and ΦT
FF which describes the target functional failure

corresponding to Table I. The SAT-instance explaining the
relation between the target functional failure and the structural
faults, ΦR, is built using the definition of the functional failure
and the good and faulty copy of the switch:

ΦR = ΦT
FF ∧ ΦT

s ∧ Φf,T
SF . (3)

V. FAULT CLASSIFICATION

The SAT instance in Eq. (3) is used for fault classification.
By means of classification, the relation between structural
faults and the defined functional failure classes is extracted.

The fault classification algorithm is summarized in Alg. V.1.
Firstly, the CreateSAT function extracts the SAT instance for
the target functional failure mode, F . In addition, it builds ΦT

s ,
the good copy of the switch.

Algorithm V.1: CLASSIFICATION(F, {fl}, T )

F : functional failure mode
fl : structural fault list
T : cycles for the functional failure activation
ΦT

FF = CreateSAT(F );
ΦT

s = CreateSAT(ΦT
c );

while ({fl} <> null)

pick fi from {fl}
{fl} = {fl} − fi
Φf,T

SF = CreateSAT(fi);

ΦR = ΦT
s ∧ ΦT

FF ∧ Φf,T
SF ;

Boolean S = Solve(ΦR);
if (S)
solution = solution ∪ {fi};

The algorithm iteratively picks a fault location from the fault
list. The faulty circuit (Φf,T

SF ) is then constructed according
to the selected fault location as explained in section III. The
complete SAT model, ΦR, is built as in Eq. (3).

The Solve routine searches for an assignment to the input
variables, so that ΦR is satisfiable. In other words, SAT
searches for a satisfying input pattern and any structural fault
fi ∈ fl, so that the functional failure occurs. It returns true
when a solution is found. In this case, the structural fault,
fi, is added to the set of solutions. Upon termination of the
algorithm, the solution includes a subset of structural faults
which cause F .

The classification results can be used to find the appropriate
fault tolerant technique for the NoC switch. For more probable
functional failure modes, a faster fault tolerant technique is
preferred, e.g., retransmission is commonly used to deal with
transient faults in NoCs. A check for detecting a functional
failure can be done either switch-to-switch or end-to-end.
Detecting a functional failure in a switch-to-switch manner
requires additional hardware and increases the component’s



latency. Nevertheless, an end-to-end retransmission introduces
a higher performance penalty in case of an error.

The classification does not only quantify the structural faults
in the functional failure classes, but also determines which
structural fault locations cause certain functional failures. This
information can be used to make a cost-aware fault tolerant
decision at multiple abstraction levels. For the functional
failures that are correctable at higher abstraction levels, no
fault tolerant feature is required to protect the corresponding
structural fault location at lower levels. For example, data
corruption can be detected and even corrected by adding an
error detection/correction code in the packet payload. But
misrouting is not easily detectable. The classification can
identify the structural fault locations which cause misrouting.
These structural fault locations should be protected by means
of a fault tolerant technique at low level.

VI. FUNCTIONAL TEST PATTERN GENERATION

The classification algorithm can also be used to generate
functional test patterns. Two conditions must be satisfied:

• The structural fault is activated: The CLF condition is true
in at least one time frame and leads to different values
of the faulty literals in the good and faulty circuit.

• The functional failure is activated: The functional failure
instance is satisfiable.

Fig. 4 shows the functional test generation flow. Primarily,
ΦFF is constructed from the functional failure library which
includes the functional failure modes. The library can be
extended in case of insufficient fault coverage.

The functional test patterns are produced using Alg. V.1.
Here, the solution includes not only the fault locations, but
also the satisfying input assignments which will be served as
the functional test pattern.

Synthesized 

Netlist

Functional 

Failure 

Library

Functional test generation

Sufficient coverage?

Save ATPG information
Functional 

Test Pattern

Yes

No

Update 

Library

Undetected 

Structural 

Faults

Fig. 4: Functional test generation

Since the functional failure library usually includes more
than one failure, a list of functional failures is given to
the classification algorithm to construct ΦT

FF . For FF =
{FF1, FF2, ..., FFm} being the set of m functional failures,
ΦT

FF is defined as:

ΦT
FF =

m∨
i=1

ΦT
FFi

(4)

in which ΦT
FFi

is the SAT instance which describes the
functional failure FFi. The structural fault must be detectable
by at least one functional failure, therefore, a disjunction over
ΦT

FFi
is required. In fact, for test pattern generation, it is

sufficient that only one of the functional failures is activated.
If the structural fault coverage is not sufficient, the func-

tional failure library can be updated to improve the coverage,
which is beyond the scope of this paper. The classification
algorithm can identify the set of structural faults which does
not lead to any functional failure in the library.

VII. EXPERIMENTAL RESULTS

The efficiency of the presented fault classification approach
is evaluated using a typical switch of the mesh topology. It
consists of five input and output ports, crossbar multiplexers,
a router, and an additional control logic for handshake signals.
Handshake is performed by the send and receive signals which
indicate a valid output or input flit. The buffer_full signal
shows the state of input buffers as seen in Fig. 3. The switch
implements the wormhole XY routing and processes the input
channels in a round-robin fashion. The VHDL switch has
been synthesized with a commercial synthesis tool in the
lsi10k library, which is constrained to one- and two-input gate
primitives. The total cell area of the synthesized switch is
14940, where the cell area of a two input nand gate is 1
area unit. The memory elements are equipped with advanced
memory BIST, and hence are not considered in the fault
classification process. Although the experiments are performed
on a mesh switch, the methodology is design independent and
can be applied to other architectures as well.

The functional failure library consists of the six functional
failure classes of table I. For the experiments, the general CLF
fault modeling was restricted to stuck-at faults, but the method
can be easily extended to more complex structural faults.
The good and faulty switches and the output characteristic
functions of the functional failures were modeled as a SAT
instance. The sequential depth of the switch determines the
number of time frames, T , and the size of the SAT problem.
The defined input characteristic function guarantees functional
test patterns in the form of NoC packets.

A. Classification

The presented approach enables functional failure clas-
sification considering structural faults. Fig. 5 presents the
distribution of the structural faults among the functional failure
classes. According to the definition, any packet loss can be
categorized as flit loss as well. However in the experiments,
the faults which cause packet loss have not been counted for
flit loss. It is observed that packet loss, data corruption, and
garbage packet classes have the highest number of structural
faults. This implies that these faults are the most probable
functional failures that might be observed due to a structural



fault in the switch. Therefore, these functional failures should
be detected by a switch-to-switch fault tolerance technique.
The other three failure modes are less realistic and may be
detected end-to-end.

0

10

20

30

40

50

60

70

80

90

100

St
ru
ct
ur
al
 F
au
lts
 (%

)

Stuck‐At 0

Stuck‐At 1

All

Fig. 5: Distribution of structural faults in functional failure classes

B. Structural Fault Coverage

The presented technique shows that among 27690 stuck-at
faults in the switch, 22101 faults are functionally testable; i.e.,
there exists an input assignment such that the fault causes one
of the specified functional failures. The fault coverage of the
functional test pattern generation is defined as:

Fault coverage(%) =
Functionally testable faults

Total number of faults
× 100 (5)

Table II summarizes the coverage results for the proposed
functional test pattern generation approach. The proposed
scheme achieves 79.82% structural fault coverage. Structural
tests like full-scan deliver full fault coverage. However, it
must be noted that some faults are functionally redundant and
therefore never become testable by a sequential test. As the
proposed method is sequential, the results are compared with a
sequential ATPG. Toward this, a commercial sequential ATPG
tool without any constraints is applied. In the same sequential
depth, it reports a fault coverage of 57.53%, while 2.79% of
the faults are untestable. The result reveals that there exists a
good correspondence between the introduced functional failure
modes and the structural faults in the switch. In addition, we
have achieved higher fault coverage compared to structural
sequential ATPG.

Fault Untestable
coverage (%) faults (%)

Proposed 79.82 20.18

Sequential ATPG 57.53 2.79

TABLE II: Functional test pattern generation results vs. ATPG

VIII. CONCLUSION

This paper presented an automated approach for functional
test pattern generation for NoC switches with high structural

fault coverage. The formal definition of functionalities of the
switch and the corresponding failure modes allow mapping of
failure modes to the switch structure in the form of clauses.
Thus, fault classification and test generation can be conducted
by modern SAT solvers.

In addition to the quantification of structural faults covered
by each functional failure mode, the experiments show an
effective classification resulting in high fault coverage of the
generated functional test. Moreover, the classification can be
used to select the appropriate fault tolerant technique while
trading off the area and timing constraints.

ACKNOWLEDGMENT

This work has been supported by the German Research
Foundation (DFG) under grant WU 245/12-1 (ROCK) and Ra
1889/4-1 (ROCK). The authors would like to thank Dr. Stefan
Holst for helpful discussions.

REFERENCES
[1] International Technology Roadmap, 2013.
[2] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for Fault Tolerance in

Networks-on-Chip,” ACM Computing Surveys, vol. 46, no. 1, pp. 8:1–8:38, 2013.
[3] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory,

and Mixed-signal VLSI Circuits. Kluwer Academic, 2002.
[4] L. Wang, C. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for

Testability, ser. Systems on Silicon. Elsevier Science, 2006.
[5] P. Maxwell, I. Hartanto, and L. Bentz, “Comparing Functional and Structural Tests,”

in Proc. Intl. Test Conf. (ITC), 2000, pp. 400–407.
[6] J. Zeng, M. Abadir, G. Vandling, L. Wang, A. Kolhatkar, and J. Abraham, “On

Correlating Structural Tests with Functional Tests for Speed Binning of High
Performance Design,” in Intl. Test Conf. (ITC), 2004, pp. 31–37.

[7] H. Fang, K. Chakrabarty, and H. Fujiwara, “RTL DFT Techniques to Enhance
Defect Coverage for Functional Test Sequences,” Journal of Electronic Testing,
vol. 26, no. 2, pp. 151–164, 2010.

[8] H.-J. Wunderlich and S. Holst, “Generalized Fault Modeling for Logic Diagnosis,”
in Models in Hardware Testing. Springer Netherlands, 2010, pp. 133–155.

[9] N. Karimi, A. Alaghi, M. Sedghi, and Z. Navabi, “Online Network-on-Chip
Switch Fault Detection and Diagnosis Using Functional Switch Faults,” Journal
of Universal Computer Science, vol. 14, no. 22, pp. 3716–3736, 2008.

[10] A.-A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, K.-T. Cheng, and V. Bertacco,
“Comprehensive Online Defect Diagnosis in On-Chip Networks,” in Proc. VLSI
Test Symp. (VTS), 2012, pp. 44–49.

[11] A. Frantz, F. Kastensmidt, L. Carro, and E. Cota, “Dependable Network-on-Chip
Router Able to Simultaneously Tolerate Soft Errors and Crosstalk,” in Proc. Intl.
Test Conf. (ITC), 2006, pp. 1–9.

[12] J. Raik, V. Govind, and R. Ubar, “An External Test Approach for Network-on-a-
Chip Switches,” in Proc. Asian Test Symp. (ATS), 2006, pp. 437–442.

[13] M. Kakoee, V. Bertacco, and L. Benini, “A Distributed and Topology-Agnostic
Approach for On-line NoC Testing,” in Proc. intl. Symp. on Networks on Chip
(NoCS), 2011, pp. 113–120.

[14] K. Aisopos, C.-H. Chen, and P. Li-Shiuan, “Enabling System-Level Modeling
of Variation-Induced Faults in Networks-on-Chips,” Proc. Design Automation
Conference (DAC), pp. 930–935, 2011.

[15] A. Dalirsani, M. E. Imhof, and H.-J. Wunderlich, “Structural Software-Based Self-
Test of Network-on-Chip,” in Proc. VLSI Test Symposium (VTS), 2014.

[16] T. Bengtsson, S. Kumar, and Z. Peng, “Application Area Specific System Level
Fault Models: A case study with a simple NoC Switch,” Proc. Intl. Design and
Test Workshop (IDT), 2006.

[17] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking Using
Satisfiability Solving,” Formal Methods in System Design, vol. 19, no. 1, pp. 7–34,
2001.

[18] A. Kunzmann and H.-J. Wunderlich, “An Analytical Approach to the Partial Scan
Problem,” Journal of Electronic Testing: Theory and Applications (JETTA), vol. 1,
no. 2, pp. 163–174, 1990.

[19] H. Konuk and T. Larrabee, “Explorations of Sequential ATPG using Boolean
Satisfiability,” in IEEE VLSI Test Symposium, 1993, pp. 85–90.

[20] P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Combinational Test
Generation using Satisfiability,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 15, no. 9, pp. 1167–1176, 1996.

[21] G. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” in
Automation of Reasoning. Springer Berlin Heidelberg, 1983, pp. 466–483.


