
1494 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

Test Strategies for Reliable Runtime
Reconfigurable Architectures

Lars Bauer, Member, IEEE , Claus Braun, Member, IEEE ,
Michael E. Imhof, Student Member, IEEE , Michael A. Kochte, Student Member, IEEE ,

Eric Schneider, Hongyan Zhang, Student Member, IEEE ,
Jörg Henkel, Senior Member, IEEE , and Hans-Joachim Wunderlich, Fellow, IEEE

Abstract—FPGA-based reconfigurable systems allow the online adaptation to dynamically changing runtime requirements. The reliability of
FPGAs, being manufactured in latest technologies, is threatened by soft errors, as well as aging effects and latent defects. To ensure reliable
reconfiguration, it is mandatory to guarantee the correct operation of the reconfigurable fabric. This can be achieved by periodic or on-demand
online testing. This paper presents a reliable system architecture for runtime-reconfigurable systems, which integrates two non-concurrent online
test strategies: Pre-configuration online tests (PRET) and post-configuration online tests (PORT). The PRET checks that the reconfigurable
hardware is free of faults by periodic or on-demand tests. The PORT has two objectives: It tests reconfigured hardware units after reconfiguration to
check that the configuration process completed correctly and it validates the expected functionality. During operation, PORT is used to periodically
check the reconfigured hardware units for malfunctions in the programmable logic. Altogether, this paper presents PRET, PORT, and the system
integration of such test schemes into a runtime-reconfigurable system, including the resource management and test scheduling. Experimental
results show that the integration of online testing in reconfigurable systems incurs only minimum impact on performance while delivering high fault
coverage and low test latency.

Index Terms—FPGA, Reconfigurable Architectures, Online Test

F

1 INTRODUCTION

R ECONFIGURABLE architectures are constantly gaining
significance for a broad spectrum of applications. In

particular, systems based on Field-Programmable Gate Arrays
(FPGAs) can be found from high-performance computing
[1] and large research systems [2], down to a plethora of
sophisticated embedded applications [3]. Partial runtime re-
configuration is one of the key innovations that have been
introduced in modern FPGAs. It allows the reconfiguration
of selected parts of the FPGA’s fabric at runtime without
affecting other regions that are currently in use. Hence,
such runtime-reconfigurable systems provide an impressive
degree of flexibility and they allow designers to find the
optimal balance between computational performance and
power consumption for their applications at runtime [4].

Modern FPGAs are typically manufactured in latest semi-
conductor process technologies (e.g. 28 nm for Xilinx Virtex-
7 and Altera Stratix V). They must not only cope with
soft errors to a growing extent, but also with aging effects,

• L. Bauer, H. Zhang and J. Henkel are with the Chair for Embedded Systems,
Department of Computer Science, Karlsruhe Institute of Technology, Building
07.21, Room 316.2, Haid-und-Neu-Str. 7, D-76131 Karlsruhe, Germany.
E-mail: {lars.bauer, hongyan.zhang, henkel}@kit.edu

• C. Braun, M. E. Imhof, M. A. Kochte, E. Schneider and H.-J. Wunderlich
are with the Institute of Computer Architecture and Computer Engineering,
University of Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany.
E-mail: {braun, imhof, kochte, eric.schneider}@iti.uni-stuttgart.de,
wu@informatik.uni-stuttgart.de

Manuscript received 15 Aug. 2012; revised 15 Jan. 2013; accepted 24 Feb. 2013;
published online 6 Mar. 2013.
Recommended for acceptance by K. Benkrid, D. Keymeulen, U.D. Patel, and D.
Merodio-Codinachs.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2012-08-0565.
Digital Object Identifier no. 10.1109/TC.2013.53.

variations, and latent defects in the reconfigurable fabric [5–
7]. These reliability threats are aggravated by long mission
times and harsh environmental conditions (e.g. temperature
or radiation).

Test is the enabling technology that allows reliable and
economic use of most recent semiconductor devices. Classic
production and burn-in tests are no longer sufficient to guar-
antee reliable reconfigurable systems throughout the whole
product lifecycle. For instance, the reconfigurable fabric of
an FPGA has to be constantly monitored by thorough online
testing to check its correct operation over time. In contrast
to offline testing, online tests can be performed concurrently
or non-concurrently to the system’s operation. This task is
particularly challenging for runtime-reconfigurable systems
where the hardware configuration changes dynamically as
part of the normal operation.

For the proposed non-concurrent online pre-configuration
online tests (PRET) and post-configuration online tests (PORT),
we adopt concepts of structural logic and interconnect tests.
The PRET and PORT differ in their target fault models, test
intervals, and test application times. PRET is designed to test
the hardware structure of regions within the reconfigurable
fabric periodically or on-demand [8, 9]. It consists of tests for
all major FPGA structures, such as Configurable Logic Blocks
(CLBs) and interconnects. PORT has the objective to perform
tests on accelerators which are hardware modules that are
dynamically instantiated by runtime reconfiguration. After
reconfiguration, PORT checks that they have been configured
correctly and deliver the expected functionality. At mission
time, PORT is used to periodically check the accelerators for
malfunctions in the programmable logic (e.g. caused by soft
errors).

The test application interrupts the system operation only

BAUER et al.: ONLINE TEST STRATEGIES FOR RELIABLE RECONFIGURABLE ARCHITECTURES 1495

for a minimal amount of time in the order of a few microsec-
onds. Both test schemes are transparent with respect to the
application and accelerator design, i.e. they don’t have to be
modified. The direct system integration of such test schemes
into a runtime-reconfigurable system with minimum impact
on application and system performance, combined with a
high fault coverage is a challenging task that is addressed
in this paper.
The main contributions of this work are as follows:

• Introducing a reliable system architecture for runtime-
reconfigurable systems.

• Seamless integration of nonconcurrent PRET and non-
concurrent PORT such that they are transparent to ap-
plications and users.

• Scheduling of PRET (including the reconfiguration of
special test configurations) and PORT periodically and
on-demand.

• Thorough evaluation of the introduced runtime-
reconfigurable system with respect to performance and
fault coverage.

The paper is structured as follows: Section 2 gives an
overview of the related work in the fields of reconfigurable
architectures, dependable systems, and test. Section 3 ex-
plains the proposed PRET and PORT methods. The system
integration of the proposed online test schemes and the
required scheduling is described in Section 4, followed by
an in-depth evaluation in Section 5. Section 6 concludes the
paper.

2 RELATED WORK

2.1 Reconfigurable Architectures
Different kinds of reconfigurable architectures evolved in
the last years [10, 11]. Most architectures focus on exploit-
ing the potential of runtime reconfiguration to increase the
performance of applications. Some architectures reconfigure
entire tasks as dedicated hardware implementations [12],
whereas other architectures reconfigure application-specific
accelerators that are invoked by an application executed on
a processor [13–15].

Fig. 1 shows the system architecture of a typical reconfig-
urable processor that is composed of runtime-reconfigurable
regions, so-called containers, and a non-reconfigurable core
pipeline. The containers, the core pipeline and the system
memory hierarchy are connected by an interconnect infras-
tructure as in Fig. 1 which consists of four bi-directional
segmented buses as used in [14]. [14] is also used as baseline
architecture for later integration and evaluation.

The core pipeline is extended by Special Instructions (SIs),
i.e. assembler instructions that perform application-specific
computations such as transformations, filters, encryption.
One or multiple accelerators need to be reconfigured to
containers to implement an SI in hardware. A runtime system
decides, which accelerators are reconfigured into which con-
tainers as well as the reconfiguration sequence. More details
about the baseline architecture and its runtime system are
available in [14].

Despite the advantages of runtime-reconfigurable architec-
tures, their management is challenging, especially when it
comes to testing. The regions of the reconfigurable fabric

R
ec

on
f.

C
on

ta
in

er

Inter-
con-
nect

…

…

Memory Controller

Co
re

 P
ip

el
in

e Data Cache/Scratchpad

Off-Chip
Memory

IF

ID

MEM

WB

EXE

R
ec

on
f.

C
on

ta
in

er

Inter-
con-
nect

Load/Store
Units &
Address

Generation
Units

Intercon-
nect

Inter-
con-
nect

Interface R
ec

on
f.

C
on

ta
in

er

Inter-
con-
nect

Fig. 1. Overview of a typical reconfigurable processor ar-
chitecture consisting of reconfigurable containers, the core
pipeline, and the memory hierarchy.

that are not intended for runtime reconfiguration can be
tested for permanent faults with established approaches such
as software-based testing of processors and caches [16], or
periodic FPGA test methods which require the interruption
of operation [17]. To test for configuration memory bit-flips,
periodic scrubbing of configuration memory [18] is very
effective.

The focus of this paper lies in regions that are reconfig-
ured at runtime. They need a different testing approach as
their configurations are not known statically. Even though
the partial bitstreams to configure a container are prepared
statically and then retrieved from a repository, the decisions
‘which partial bitstream’ should be reconfigured into ‘which
container’ at ‘which time’ are determined at runtime (exam-
ple given in Section 5.1).

2.2 Dependable Systems

Dependability, among other system properties, comprises
both reliability and availability [19]. The focus of this work is
to increase reliability by ensuring that the used reconfigurable
fabric is fault-free and the reconfiguration process completes
without error.

For the test of logic resources of the fabric, the stuck-at
fault model is most commonly used. Dedicated fault models
exist for interconnects [20]. Test generation for delay faults
in the fabric has been introduced in [21]. Apart from these
permanent faults, transient events can cause data corruption
in memory elements. Especially for SRAM-based FPGAs, soft
errors in the configuration memory can alter the configured
function. Faults in the reconfiguration logic, e.g. address de-
coder faults, can result in arbitrary behavior of the configured
fabric.

The reliability of a system can be increased by tests tar-
geting faults, and fault-tolerance measures such as time,
information, or structural redundancy for concurrent error
detection. If executed autonomously and online, these tech-
niques allow a system to detect latent faults and correct
errors. Autonomous adaptation to faults as well as graceful
degradation becomes possible.

Classical approaches, such as duplication with comparison,
triple modular redundancy or principles of self-checking
circuits [22] have been optimized for FPGAs [23–25] and
extended by FPGA-specific techniques like scrubbing [18].

Sensors in the system allow to monitor the circuit behavior
and temperature [26, 27]. The sensor data can be aggregated

1496 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

and used to predict failures. With failure detection or pre-
diction at hand, systems based on reconfigurable fabric can
perform self-repair [28–30] to ensure that mission logic does
not use faulty hardware blocks of the fabric. A framework
that dynamically adapts its fault tolerance level to varying
soft error rates is proposed in [31].

Dependable systems based on runtime reconfiguration re-
quire that both the reconfigurable fabric is fault-free and the
reconfiguration process completes without error. Runtime on-
line test is an efficient way to check whether the fabric is fault-
free and the reconfiguration process completed correctly. Test
complements concurrent error detection techniques allowing
to prevent fault accumulation in the system and thus, is a
requirement in any highly reliable architecture.

2.3 Test Methods for Reconfigurable Architectures
The thorough test of the FPGA fabric requires detailed struc-
tural knowledge. The test generation is typically tailored
to a specific FPGA architecture. Application-dependent tests
[32, 33] target the faults relevant for a known, fixed applica-
tion of the FPGA. Such test schemes have to be adapted for
each application.

In contrast, application-independent tests target the whole
fault universe not limited to a specific use of the reconfig-
urable resources. Such a test consists of multiple test sessions,
each comprised of a test configuration (TC) and a set of
stimuli. A TC configures the FPGA in a way that a set of the
structures is controllable and observable so that appropriate
test stimuli can be applied to test for faults. The number of
required test configurations may range from a few up to a
few hundreds if programmable interconnect structures are
completely included in the tests [34].

Different test strategies are used for the logic and sequen-
tial parts of CLBs, interconnects, I/O cells and specialized
cores like RAM or DSPs. For memories, high-coverage func-
tional March tests [35] are used, for arithmetic structures like
multipliers or DSPs, functional tests with high structural fault
coverage are possible [36].

For an online in-field test of FPGAs, external equipment
for test pattern generation (TPG) and output response analysis
(ORA) [37, 38] is not available. Internal testing approaches
based on built-in self-test (BIST) principles include TPGs and
ORAs in the chip.

The highly regular nature of FPGAs allows to configure the
structures under test into an iterative logic array [39] such
that the test time is constant and independent of the array
size (C-testability) [40]. FPGAs with support for memory
readback allow a test strategy similar to scan design where
the response is captured in sequential elements, read back,
and finally analyzed [17, 41]. The readback increases the test
time.

While the programmable interconnect structures are to
some extent already tested during the test of other structures,
dedicated testing based on multiple test configurations has
been proposed [42–44]. Due to the complexity of the intercon-
nect configuration circuitry, a high number of TCs is required.
This number can be reduced by testing only the interconnect
resources used by the target application [45, 46].

Using partial dynamic reconfiguration of FPGAs, the test
reconfiguration can be conducted by an external [47] or em-

bedded processor at runtime [48–50]. The access to an internal
high-bandwidth configuration port significantly reduces the
reconfiguration time

In addition to testing, the homogeneous structure of an
FPGA allows the efficient diagnosis of faulty components.
High resolution is achieved by additional TCs to distinguish
faults with equal signatures [51].

Both test and diagnosis can be executed offline, requiring
idle periods of the unit under test, or non-concurrently online,
allowing the parts of the array which are currently not under
test to continue functional operations. The Roving STARs (self
testing areas) method [52] partitions the FPGA into multiple
regions which can be either used functionally or tested by an
online BIST scheme controlled by an external module.

Scrubbing [18], i.e. continuous reading and overwriting
the configuration data, detects and repairs errors in the
configuration memory, but fails to detect structural faults in
the CLBs It needs to access the configuration port frequently,
which conflicts with functional runtime reconfigurations and
thus greatly degrades the performance of the reconfigurable
architecture.

In this work the structural test of the reconfigurable fabric
is tightly integrated into the functional system scheduling.
The existing reconfiguration features in the system are reused
as much as possible.

2.4 Online Test Scheduling
Test scheduling strategies for core-based systems have been
proposed targeting the optimization of test time, test power,
and test access bandwidth [53]. For uniform multi-core sys-
tems, online test schemes with dedicated test controllers have
been introduced [54], which isolate target cores, i.e. stop the
execution and save the critical state before the application
of stored test patterns. Such scheduling approaches have
been extended to the operating system level [55] and to the
utilization of virtualization techniques [56] for task migration
from cores under test. With respect to runtime-reconfigurable
systems with challenging resource and runtime constraints,
and heterogeneous accelerators, these approaches are of lim-
ited use.

3 ONLINE TESTING FOR RECONFIGURABLE AR-
CHITECTURES

The correct operation of mission logic, instantiated into a
reconfigurable container, mandates that the underlying re-
configurable fabric is free of defects, and the reconfiguration
process is conducted without error.

This section details the design of structural pre-
configuration online tests (PRET) and post-configuration
online tests (PORT). Reconfiguration in the target system is
based on containers of a known size, that can be isolated
from the system for testing, and that provide an access for
test stimuli (Fig. 1). All tests are executed at full system
speed.

3.1 PRET: Pre-Configuration Online Test
To check that the reconfigurable fabric of a container is free of
defects, it is necessary to exercise the fabric such that effects of

BAUER et al.: ONLINE TEST STRATEGIES FOR RELIABLE RECONFIGURABLE ARCHITECTURES 1497

defects become observable. This is achieved by the structural
pre-configuration online test [8] which targets the following
faults in the fabric.

3.1.1 Fault Model
The stuck-at fault model is widely adopted in the literature
for FPGA testing [40]. For complex FPGA sub-components
such as lookup tables (LUTs) and flip-flops, typically only
a functional description is available from the vendor and
structural implementation details are missing. This results in
a weak modeling of defects. Here, the stuck-at fault model
is used for components in which the structural information
is sufficient for fault derivation and for the interconnects.
For the remaining components, structural and cell faults
are targeted during test generation resulting in a hybrid
fault model. The tests are generated under the single fault
assumption.

• LUT in function mode: The LUT in function mode is
treated as a combinational function of n inputs and m
outputs, and the cell fault model [57, 58] is applied. Cell
faults describe any mismatch at the outputs of a unit
under test for the possible inputs. The number of cell
faults equals the number of possible inputs multiplied
by the number of faulty outputs 2m(2n − 1).

• LUT in RAM mode: If the LUT is operated in RAM mode,
the following memory faults [35] are targeted: stuck-at
faults, address decoder faults, transition faults, coupling
faults, and data retention faults.

• Sequential elements: CLBs contain separate sequential ele-
ments such as flip-flops, latches, or LUTs in shift register
mode. For these elements, we consider the commonly
used fault models in hardware testing, i.e. stuck-at and
transition faults [53].

3.1.2 Test Configuration Generation for CLB Elements
Due to the complexity of a CLB, it requires multiple TCs to
exercise all of its components. In each TC, the fabric under
test is configured such that a subset of the components in
the CLBs is activated and tested. The test configurations are
designed to guarantee full fault coverage. Testing is applied
per container. Each TC consists of two main parts:

1) Container setup: CLBs are configured in a specific way
to ensure the test of targeted faults.

2) Test stimuli: Applied to exercise the configured compo-
nents in the CLBs.

In addition, test infrastructure is required to generate the
stimuli with a test pattern generator (TPG) and evaluate the
responses with an output response analyzer (ORA). The TPG
and ORA may differ between TCs. They are external to the
container under test to cover the container’s bus interface.

The regular structure of the reconfigurable fabric allows the
efficient and scalable test of large containers by connecting
the CLBs into C-testable arrays as exemplified in Fig. 2. The
CLBs in the array are configured and interconnected such
that each CLB receives all required test patterns at its inputs
from the TPG or via its predecessor. The test responses of
the CLB are propagated to the ORA via its successors. This
ensures equally high controllability and observability of all
CLBs in the array during testing. The resulting test time for
the array is very low and independent of the array size [40].

A TPG feeds the test patterns to the array and the responses
are aggregated and evaluated using an ORA. For the TPG, a
counter is used to generate the exhaustive test set. Responses
are evaluated by mutual comparison, as indicated in Fig. 2.
To avoid a slow test clock, the TCs are pipelined by utilizing
the sequential elements in CLBs.

Test Pattern
Generator
(TPG),

e.g. counter

Output Response
Analyzer (ORA)

Container

Fig. 2. Container configured into a C-testable array with
external TPG and ORA.

For the LUT in function mode, all cell faults are targeted.
This is achieved by two TCs [40], and by applying the
exhaustive set of test patterns to the inputs. For the shift
register mode of the LUT, stuck-at and transition faults are
tested by applying standard scan chain test patterns [59]. The
LUTs in shift register mode are connected into multiple shift
chains. The outputs of these chains are compared mutually
for response evaluation. Individual flip-flops in CLBs can be
simultaneously tested in the same TC by including them into
the chain. An n-input LUT can also implement a 2n-bit RAM
which is tested by the MATS++ [35] algorithm to ensure
coverage of all stuck-at faults, address decoder faults, and
transition faults. Test patterns are generated by the global
TPG.

The multiplexers in the CLBs are tested by applying all
possible configurations to exercise all combinations of the
select signals. The data path is tested for stuck-at faults by
applying the 0 and 1 stimuli. Multiplexer testing is typically
included in other tests since they are on the sensitized path
used for testing other components.

Many FPGA architectures contain dedicated carry chains
consisting of multiplexers and XOR cells. To test for all the
stuck-at faults in the carry chain efficiently, the elements are
configured into pipelined C-testable arrays.

Testing flip-flops in CLBs is identical to testing the LUT
in shift register mode. If there are level sensitive latches, a
separate TC is required which creates a scan chain of latches.
To guarantee proper latch function, two non-overlapping
clocks are used. A detailed discussion is given in [8].

For a container consisting of multiple CLBs, the TCs are
generated according to Fig. 3. In the first step, the targeted
CLBs in the container are selected, depending on its size and
location. Then, the required TPG and ORA for the different
tests are generated. In the last step, the configuration of the
container is created by instantiating TC templates for the
selected CLBs. The resulting configuration data is stored in
an XDL (Xilinx Design Language, [60]) file.

3.1.3 TCs for Application-Dependent Interconnect Test

During system operation the set of reconfigured hardware
accelerators uses only a fraction of the interconnect resources,
such as wires and programmable interconnect points (PIPs).
Instead of testing the complete interconnect configuration
circuitry, only the interconnect resources used by the tar-
get application are tested in an application-dependent pre-

1498 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

Specify container location/size by

coordinates to obtain targeted CLBs

Generate TPG/ORA, independent of

container size (C-testability)

Instantiate test configuration template

in container sites, write XDL file

TC

TC

T
P

G
/O

R
A

TC

T
P

G
/O

R
A

XDL

Fig. 3. XDL file generation flow for CLB TCs.

configuration test. Thereby the number of required test con-
figurations is much lower than in an exhaustive test of all
configuration possibilities of the PIPs.

The required TCs for this interconnect test are derived
from the accelerator configurations (ACs) such that a high
controllability and observability of the used interconnects
is achieved. For each accelerator, the interconnect structure
under test is given by its AC and taken over into the
corresponding TC. Since the logic functions in the ACs may
reduce controllability and observability, the functions are
modified in the TC. All logic functions implemented in CLBs
in the AC are changed to the XOR function. All faults at
interconnect lines are observable at the outputs unless all
propagation paths to outputs are reconverging multipaths
with even branch multiplicity (fault coverage is analyzed in
Section 5.2).

Each test configuration is now transformed to an equiva-
lent simulation model containing FPGA primitives such as
wires, multiplexers or LUTs. The behavioral description of
these primitives is provided by Xilinx in the SIMPRIM library.
A commercial automatic test pattern generation (ATPG) tool
is used to generate the interconnect test patterns. The list of
targeted faults consists of stuck-at faults assigned to all in-
and output ports of the contained primitives such that all
faults at signal fanout stems and their branches are tested.

The precomputed test set is applied once the TC is con-
figured into a container. The container under test computes
a signature over all test responses which is then compared
with the stored expected signature.

3.2 PORT: Post-Configuration Online Test
The fabric’s structural integrity is assessed by executing
PRET. However, this does not guarantee the correct configu-
ration and integration of mission logic in a container. Errors
may occur during the configuration process:

• due to faults in the configuration logic, and/or
• due to corruption of the bitstream in system memory or

during transmission of the bitstream caused by transient
events such as crosstalk or radiation.

In consequence, the configured function of the targeted
container may be wrong. Even worse, the configuration of
other containers may be adversely altered in case of address
decoder faults or errors in the configuration address in the
bitstream.

The post-configuration online test (PORT) tests the function
of the reconfigured hardware accelerators. Conducting PORT
directly after reconfiguration assesses whether the reconfig-
uration process completed without errors and that the ex-
pected functionality is delivered. A periodic PORT execution

during operation checks for malfunctions occurring during
phases where no reconfiguration occurs, for example the
corruption of configuration bits due to soft errors.

The PORT is conducted by deterministically generated
patterns exercising structures with low controllability or ob-
servability. PORT does only test the parts of the container
fabric which are used by the mission logic. Both built-in self-
test as well as software-based self-test principles for test gen-
eration and response evaluation can be exploited. In contrast
to PRET, PORT does not reconfigure the tested structures
and thus exhibits a much lower performance impact on the
application.

3.2.1 Test Set Generation
Post-configuration online test patterns are generated for each
accelerator. A deterministic pattern set exercising the given
accelerator is derived similar to the steps in Section 3.1.3.
The configuration bits of the contained primitives define their
behavior and are specified as model parameters called init-
strings (Fig. 4-a). The models of the primitives are trans-
formed such that deterministic test patterns can be generated
using a commercial automatic test pattern generation (ATPG)
tool.

LUT3 Config / Init LUT3

8:1 Multiplexer

a) SIMPRIM instance
(behavioral)

b) Mapped instance
(structural)

A1

A2

A3

OUT

A1

A2

A3

OUT
x

x

Cell
Fault

Fig. 4. Mapping of configuration bits for a 3-input LUT.

This transformation requires a detailed structural modeling
of the configurable primitives. We map the behavioral simula-
tion models to a structural description based on multiplexers
such that the configuration bits are represented as separate
signals. E.g. each n-input LUT containing 2n configuration
bits is mapped to a tree of 2n − 1 2:1 multiplexers. This
mapped model is processed by the commercial automatic test
pattern generation tool and yields a test pattern set targeting
stuck-at faults on internal signals as well as in configuration
bits, i.e. cell faults in the used LUTs (Fig. 4-b).

3.2.2 Test Execution
The post-configuration online test execution is possible by
two strategies: Each configured accelerator is tested with its
accelerator specific pattern set (Section 3.2.1). Alternatively, a
unified test set which consists of the union of all generated
accelerator specific test sets is used for all containers. This test
set is effective for all considered accelerators and is efficiently
applied to all containers in parallel using a broadcast on the
bus structure (similar to multi-site testing). Each container
calculates a test signature over all test responses of the
applied pattern set using a 32-bit multiple input signature
register (MISR, [53]). By comparing the signature of each
container with the expected signature of the configured ac-
celerator the test result is calculated.

BAUER et al.: ONLINE TEST STRATEGIES FOR RELIABLE RECONFIGURABLE ARCHITECTURES 1499

4 SYSTEM INTEGRATION AND SCHEDULING
4.1 Integration Overview
This section explains how the developed test manager that
contains the test pattern generator (TPG) and the output re-
sponse analyzer (ORA) for PRET and PORT is integrated
into a runtime-reconfigurable system. Fig. 5 shows an ex-
cerpt of a reconfigurable fabric with three containers and
the components involved in testing them. In the first step
(Fig. 5a), the runtime system decides that an accelerator shall
be reconfigured into a particular container to implement a
Special Instruction (SI), which triggers the demand to test the
container first (a so-called on-demand PRET). Details on those
decisions of the runtime system (available in [14, 61]) are
beyond the scope of this paper and are orthogonal to the pre-
sented approach. As performing an exhaustive PRET would
delay the accelerator reconfiguration significantly, PRET is
executed incrementally. This means that not all Test Config-
urations (TCs) are applied to the container at once, but only
some of them. The runtime system decides how many TCs
should be applied (potentially none) before reconfiguring the
accelerator, depending on the test history. The runtime system
tracks which TCs were applied to a container in the past and
how much time passed since the last exhaustive PRET of the
container. Depending on this test history, it activates PRET,
reconfigures the selected TCs into the container, and uses
TPG and ORA to exercise the reconfigurable fabric (Fig. 5b).
In addition to the on-demand PRETs, the runtime system
also schedules periodic PRETs to ensure that also seldomly
reconfigured containers are tested.

Test Manager
PORT PRET

Test Manager
PORT PRET

Runtime
System

Recon-
fig Port Conf.

Data

Runtime
System

Conf.
Data

b) Basic Pre-configuration online Test
(PRET)

Runtime
System

Conf.
Data

Test Manager
PRET

c) Reconfiguring the Accelerator into the
Container

Runtime
System

Recon-
fig Port Conf.

Data

a) Initial Binding of Accelerators to
Containers

d) Initial Post-configuration online Test
(PORT) and subsequent PORTs (from
time to time)

Recon-
fig Port

Recon-
fig Port

PORT
Test Manager
PORT PRET

Reconfigurable Fabric Reconfigurable Fabric

Reconfigurable Fabric Reconfigurable Fabric

Fig. 5. Typical runtime flow with PRET and PORT.

If no structural defect is found by PRET, the runtime
system reconfigures the desired accelerator into the con-
tainer (Fig. 5c). Before the accelerator is used in an SI, the
runtime system triggers an on-demand PORT (Fig. 5d) to
test whether the reconfiguration process completed without
error, i.e. whether the accelerator is operational. Additionally,
accelerators instantiated in other containers are tested as well
to check that they were not affected by the reconfiguration.
As PORT does not require any reconfiguration, it operates
significantly faster than PRET and can also be applied during
normal operation. The runtime system schedules subsequent
periodic PORTs.

4.2 Integration Details
The presented PRET and PORT are conceptually orthogonal
to a particular system architecture. This section describes
their integration into the reconfigurable processor architec-
ture that is shown in Fig. 1 (the baseline architecture). Fig. 6
shows the resulting architecture after the test manager is
integrated with the reconfigurable containers.

To execute PRET or PORT, the test manager needs to com-
municate with the container under test. This communication
is established by the same interconnect infrastructure that is
already available to establish inter-container communication
for SI executions. In order to utilize this infrastructure, both
PRET and PORT are implemented as dedicated test-SIs. In the
baseline architecture, all SIs contain an implicit control word
which is not part of the SI assembly instruction, but stored
in an on-chip memory for each executable SI. This control
word configures the interconnect infrastructure according to
the SI requirements, i.e. depending on which containers are
configured with the required accelerators. For the test-SIs, the
same mechanism is used to establish the connection between
the test manager and the container under test. Additional
details can be found in [61, 62], but are not required for
understanding the test schemes described in this paper.

C
on

t.
5

Inter-
con-
nect

C
on

t.
1

Inter-
con-
nect

...

...

C
on

t.
4

Inter-
con-
nect

Load/Store
Units &
Address

Generation
Units

Intercon-
nect

Inter-
con-
nect

Intercon-
nect

Test
Manager

ORA TPG

...

...

Communication
Legend:

with CPU:
with TPG:
with ORA:

Fig. 6. Test manager integration with TPG and ORA.

For PRET, the test configuration needs to be reconfigured
into the container under test before the test-SI can be exe-
cuted. Sending the test patterns to the container under test
and analyzing the responses is similar for PRET and PORT
and is performed by the test-SIs. When the processor executes
a test-SI, the SI parameters are sent from the register file to
the test manager, as shown in Fig. 6 step 1©. The parameters
determine which container is tested and which test patterns
are applied. The test manager sends the test patterns to all
containers (Fig. 6 step 2©). The patterns are generated in
the test manager, or stored along with the expected output
signatures in an on-chip memory (see evaluation in Section 5).
The memory is attached as a slave to the system bus and
initialized when the system starts.

For PRET targeting subcomponents of CLBs, a test pattern
and its corresponding response fit into one 32-bit word each.
For each test pattern, the responses of 4 containers are sent
back to the test manager (Fig. 6 step 3©). The limitation to 4
responses per cycle is due to the availability of 4 buses for
the interconnect infrastructure. The example in Fig. 6 step 3©
shows how the responses of containers 1–4 are sent back via
the buses. The test manager then selects the response of the
container under test with an internal multiplexer. To be able
to perform PRET on containers 5–8, another test-SI is used
that configures the interconnect infrastructure such that the
results of these containers are sent back.

1500 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

During PORT, the responses of the accelerators are com-
pacted in space and time as explained in Section 3.2. After
the application of the test patterns, a single 32-bit signature
per container has been computed and is stored locally. To
ensure that the outputs and the bus interface of a container
are also tested, the hardware that computes the signature
is integrated into the interconnect infrastructure. PORT only
needs one test-SI that tests all containers at the same time.
After applying all test patterns, the locally stored signatures
are sent to the test manager in multiple cycles (four signatures
per cycle). The test manager then compares the signatures
with the expected signatures that are specific for each accel-
erator. The information which accelerator is reconfigured to
which container is available in the hardware architecture and
is updated before and after each reconfiguration.

For PRET targeting interconnects, an interconnect test con-
figuration is reconfigured into the container under test similar
to PRET for CLB subcomponents. Then, stored test patterns
are applied similar to PORT, and a test signature is computed
and sent back to the test manager.

At the end of the tests (PRET or PORT), the final test result
(passed or failed) is written back to the register file (Fig. 6
step 4©). As the PORT test-SI tests all containers at the same
time, the result contains a 1-bit information (passed or failed)
for each container.

4.3 Test Scheduling
4.3.1 PRET Scheduling
The cost of PRET execution is high as time-consuming recon-
figurations have to be performed. Thus, we aim at reducing
the application impact by executing PRET at times when
the system needs to be reconfigured anyway. An on-demand
PRET Test Configuration (TC) is scheduled after a certain
number of Accelerator Configurations (ACs). For instance, one
TC is scheduled before every AC or before every 2nd AC, 3rd

AC, etc. This allows to distribute the tests over space (num-
ber of containers) and time (test frequency of a particular
container). The tests are initiated by the runtime system that
is responsible for scheduling the accelerator reconfigurations.
After a reconfiguration completes, the runtime system is
informed by an interrupt. If that reconfiguration was a test
configuration, the runtime system executes a PRET SI for
the corresponding container and evaluates its result before
triggering the next reconfiguration.

In addition to on-demand PRETs before accelerator con-
figurations, a timer-based periodic PRET is realized. This is
required to limit the test latency for containers which are
only rarely reconfigured by the running application. The
periodic PRET is implemented by a handler (see Algorithm 1)
consisting of two phases: i) triggering the reconfiguration of
a TC for a particular container (lines 3–14) and ii) executing
the PRET SI after the TC is reconfigured (lines 15–29).

The first phase of the handler scans all containers for their
last test time (maintained by a data structure of the runtime
system) and identifies the least recently tested container (lines
4–6 in Algorithm 1). If the time since the last test is larger
than a configurable threshold (we use 500 ms for evaluation
in Section 5), a periodic PRET is triggered for this container.

The second phase of the handler is activated when the
reconfiguration of the test configuration triggered by the first

phase is completed. It then executes the PRET SI, informs the
runtime system about the health state of the container under
test and updates the data structures for the next PRET.

Algorithm 1 Interrupt Handler for periodic PRET using the
‘Least Recently Tested Strategy’.
Require: Trigger by timer event and reconf complete event
Require: cont[i]: runtime system information about containers
1: static pret cont := NULL; // which container
2: static pret tc := NULL; // which test configuration
3: if (triggered by timer event) then
4: // determine least recently tested container
5: lrt cont := MIN∀Container i {cont[i].last test time};
6: lrt time := cont[lrt cont].last test time;
7: if (current time− lrt time > Threshold) then
8: pret cont = lrt cont;
9: pret tc = cont[lrt cont].next tc;

10: // Trigger the reconfiguration of the test config.
11: reconfiguration queue.push(pret cont, pret tc);
12: return
13: end if
14: end if
15: if (triggered by reconf complete event and pret cont 6= NULL

and cont[pret cont].accelerator = pret tc) then
16: switch (pret cont)
17: case 0− 3:
18: result = pret si cont0 3(pret cont);

// this calls the test-SI for containers 0–3
// parameter: which of these 4 containers to test

19: break
20: case 4− 7:
21: result = pret si cont4 7(pret cont− 4);
22: break
23: end switch
24: cont[pret cont].health state := result;
25: cont[pret cont].last test time := current time;
26: cont[pret cont].next tc := (cont[pret cont].next tc+ 1)

mod number of tcs;
27: pret cont := NULL;
28: pret tc := NULL;
29: end if

4.3.2 PORT Scheduling

The on-demand PORT is conducted directly after reconfigu-
ration to assure that the reconfiguration process has correctly
completed without error and that the configured accelerator
delivers the expected functionality. As PORT tests all con-
tainers in parallel (see sections 3.2 and 4.2), errors in the
other accelerators, e.g. due to address decoder faults in the
configuration logic or errors in the configuration address, are
detected as well.

In addition, periodic PORTs are also scheduled over run-
time to check the accelerators for malfunctions, caused e.g. by
emergent faults in CLBs or soft errors in configuration bits.
Periodic PORT is realized by an interrupt handler similar to
the periodic PRET handler (Algorithm 1), but without the
need to trigger reconfigurations.

5 EVALUATION

This section investigates the overhead and test effectiveness
of PRET and PORT, integrated into the reconfigurable archi-
tecture described in Section 4.

BAUER et al.: ONLINE TEST STRATEGIES FOR RELIABLE RECONFIGURABLE ARCHITECTURES 1501

5.1 Experimental Setup
The reconfigurable architecture introduced in Section 4 forms
the platform for the experimental evaluation. A Leon proces-
sor [63] is used as core pipeline with a configurable number
of attached containers (see Fig. 1). The actual hardware proto-
typing is performed on an XUPV5 FPGA board with a Xilinx
Virtex-5 LX110T. Our prototype has 5 runtime-reconfigurable
containers with 4x20 CLBs per container. We have integrated
the test manager into the prototype (as shown in Fig. 6)
and implemented test-SIs to perform tests. A SystemC-based
simulator (parameterized by the hardware prototype) is used
for evaluating different system parameters like the number
of containers. The system operates at a clock frequency of 100
MHz and a reconfiguration bandwidth of 50 MB/s (limited
by off-chip system DRAM that is also used to store partial
bitstreams).

A sophisticated H.264 video encoder is chosen as target
application. The encoder is a challenging application since
it frequently reconfigures accelerators in the containers. The
H.264 encoder consists of three different functional blocks
that are executed in sequence for each video frame: Mo-
tion Estimation (ME), Encoding Engine (EE), and in-loop
deblocking filter. Each functional block requires different
Special Instructions (SIs, implemented by multiple different
accelerators) that are reconfigured when the block executes.
For instance, when EE processes a frame then the SIs for EE
are reconfigured which replaces the SIs for ME that finished
processing this frame before EE started. The SI requirements
for a particular computational block may vary over time. For
instance, EE uses different encoding techniques (accelerated
by different SIs) depending on the input data, e.g. slow
moving objects vs. hectically changing structures.

In total, 9 SIs are implemented for the H.264 encoder by
using combinations of 9 different types of accelerators (see
Table 1). More details about the developed SIs and accel-
erators for H.264 are available in [64]. The implementation
of the H.264 encoder on the reconfigurable system leads to
a speedup of more than 20× in comparison to the Leon
processor without SIs.

5.2 PRET Results
The PRET overhead and test effectiveness are discussed
in the following. Additional hardware blocks for TPG and
ORA as well as memory for the generated test patterns are
required. This introduces a small area overhead discussed in
Section 5.2.1 but has no effect on the system clock frequency.
Tests are scheduled periodically or on-demand to containers
like functional workloads. PRET execution may delay the
configuration of accelerators or consume communication re-
sources. The resulting impact on the performance as well as
the test effectiveness are presented in Section 5.2.2.

5.2.1 Test Configurations
A full test session consists of multiple test configurations
(TCs), each of which tests a subset of the components in the
CLBs of a container or a set of interconnects used in one
of the accelerator configurations as explained in Section 3.1.
Altogether nine TCs are required to test all subcomponents
in the CLBs, and another nine TCs are required to test

TABLE 1
Short description of accelerators implemented for H.264.

Accelerator Description

Clip3 clipping to a configurable min/max interval
CollapseAdd summing up the 4 bytes inside a 32-bit word
LF BS4 4-pixel edge filter for in-loop deblocking
LF Cond filtering condition for in-loop deblocking
PointFilter six-tap filter for sub-pixel motion estimation

and compensation
QuadSub 4 parallel byte subtractions
SADrow 4 sum of absolute differences of two 4-pixel rows
SAV sum of absolutes of four 16-bit values
Transform (inverse) DCT or (inverse) Hadamard transform.

the interconnects of the nine accelerators of Table 1. Partial
bitstreams for these TCs are generated and stored in memory.

Table 2 provides an overview of the 18 TCs, the 9 CLB
TCs labeled TC 1-9 and the 9 interconnect TCs labeled 10-18.
Column one shows the configuration number. Column two
shortly describes the parts of fabric under tested. Columns
three and four list the PRET overhead in CLBs used for the
TPG and ORA and the size of the generated partial bitstream.
The total area overhead introduced by PRET for all TCs
is 17 CLBs. The test time for a container consists of two
parts: the container configuration time and the test pattern
application time (see ‘Test length’ in Table 2). Typically, the
latter ranges from a few cycles up to a few hundred cycles.
For instance, applying all test patterns for TC 9 (the TC with
the largest number of patterns) lasts 3.2 µs at 100 MHz system
frequency. The container configuration time dominates the
test time with tens of thousands of cycles and is directly
proportional to the size of the configuration data (partial
bitstreams) and the reconfiguration bandwidth. As shown in
Table 2, the bitstream size of each TC varies from 22.3 KB to
29.6 KB, which corresponds to a configuration time between
0.45 ms and 0.59 ms at 50 MB/s configuration bandwidth,
i.e. between 45 and 59 thousand cycles at 100 MHz system
frequency.

The PRET overhead for the interconnect TCs is not applica-
ble as the deterministic patterns are not generated by a TPG
but stored similar to PORT patterns. For response compaction
we reuse the response compaction unit of the PORT. In
total 3780 bytes are required to store the test patterns of
all interconnect TCs together with their signatures. One of
the nine accelerators (and its corresponding TC) requires
two clock cycles for execution (78.8 MHz). All others require
only a single clock cycle and have a frequency higher than
100 MHz. All interconnect TCs reach a fault coverage of 100%,
except for SADrow 4 with a fault coverage of 98.28%.

5.2.2 PRET Scheduling
Fig. 7 shows the simulation results for the performance loss
under different test frequencies, depending on the number
of reconfigurable containers. The test frequencies vary from
one test configuration before every accelerator configuration
(1 TC/AC) to one test configuration before every 4th accelera-
tor configuration (1 TC/4 ACs). Using a lower test frequency
(e.g. 1 TC/4 ACs) reduces the overhead. The PRET handler
is triggered every 1 ms and performs PRET if a container has
not been tested for 500 ms. For reference, in a system with 10
containers and without PRET/PORT, the time between two

1502 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

TABLE 2
Test configurations for CLBs and interconnects: Overhead,

size, frequency and length.

PRET Bitstr. Freq. Test
overh. size length

TC Tested components [CLBs] [KB] [MHz] [Patterns]

1 LUT conf. as XOR, 2 24.0 207 64connected to FF

2 LUT conf. as XNOR, 2 24.0 207 64connected to FF

3 Carry MUX, interleaved 1 28.6 168 6with MUX and latch

4 Carry MUX, interleaved 1 26.1 154 6with MUX and latch

5 Carry XOR, interleaved 1 28.0 168 6with MUX and FF

6 Carry XOR, interleaved 1 28.2 154 6with MUX and FF

7 Carry-in/-out with 1 27.1 183 6multiplexed scan chain

8 LUT conf. as SR 1 22.9 157 6with slice MUX

9 LUT conf. as RAM 7 22.3 225 320with slice output

10-18 Interconnect and PIPs n.a. 29.6 78.8- 13-
of the nine accelerators 191.9 123

consecutive accelerator configurations in a container ranges
from 13.2 ms to 1240 ms (average: 200 ms).

Reconfigurable architectures with more containers have
a lower overhead as more containers are still operational
during the test application. For instance, in an architecture
with 5 containers, only 4 containers can be used for SIs
during the PRET reconfiguration and pattern application
period, whereas in an architecture with 14 containers, still
13 containers can be used for acceleration.

Fig. 8 shows the average test latency. For example, for
an architecture with 10 containers and a test frequency of
1 TC/3 ACs, each container is completely tested every 7.1
seconds while the performance loss introduced by PRET is
only 0.5%. The observed test latencies (3.8 s to 8.1 s) show
that emerging faults do not remain undetected in the system
for longer than 1.9 s to 4.05 s in average.

As shown in Fig. 9, with decreasing on-demand PRET
frequencies, the number of on-demand tests (solid lines)
decreases while the number of periodic tests (dashed lines)
increases. A low on-demand PRET frequency increases the
chance that a periodic test will be triggered because the
possibility that a container remains untested for a time that

0.0%

0.5%

1.0%

1.5%

2.0%

5 6 7 8 9 10 11 12 13 14

P
e

rf
o

rm
an

ce
 lo

ss
 [

%
]

Number of containers

1 TC/AC
1 TC/2 ACs
1 TC/3 ACs
1 TC/4 ACs

Fig. 7. Performance loss of the video encoder application
under different on-demand PRET frequencies and number of
containers.

2

4

6

8

10

12

5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

 t
e

st
 la

te
n

cy

[s
]

Number of containers

1 TC/AC 1 TC/2 ACs

1 TC/3 ACs 1 TC/4 ACs

Fig. 8. Average test latency under different PRET frequencies
and number of containers.

exceeds the threshold (in our experiment 500 ms) is higher.
For reconfigurable systems with a large number of containers,
all accelerators may fit into the containers at the same time.
Hence, less reconfigurations are required leading to fewer on-
demand tests and a higher number of periodic tests.

0

50

100

150

200

250

300

350

400

1 2 3 4

5 containers; on-
demand PRET

5 containers;
periodic PRET

9 containers; on-
demand PRET

9 containers;
periodic PRET

14 containers;
on-demand PRET

14 containers;
periodic PRET

1 TC / AC 1 TC / 2 ACs 1 TC / 3 ACs 1 TC / 4 ACs N
u

m
b

e
r

o
f

re
co

n
fi

gu
ra

ti
o

n
s

fo
r

P
R

ET

Frequencies for on-demand PRET

Fig. 9. Comparison of the number of on-demand and periodic
tests for different on-demand PRET frequencies and number
of containers.

5.3 PORT Results
This section discusses the achieved fault coverage and test
overhead of PORT.

5.3.1 Fault Coverage
The fault coverage of the test patterns applied during PORT is
evaluated by fault simulation. The targeted fault set depends
on the CLB usage of the accelerator and is computed accord-
ing to the hybrid fault model (see Section 3.1.1). It is the union
of the stuck-at faults in the used CLBs and interconnects, as
well as the functional cell faults for all used LUTs.

The fault simulation is based on the synthesized, mapped
and routed accelerators, for which simulation models based
on Xilinx SIMPRIM instances are generated (see Sec-
tion 3.2.1). E.g. Clip3 contains 87 LUT2, 78 LUT3, 128 LUT4,
27 LUT5 and 37 LUT6 instances containing 6252 LUT con-
figuration bits which are mapped to 5895 2:1 multiplexers.
In these instances, a number of address inputs to LUTs have
been assigned constant values during synthesis, effectively
masking out a part of the memory elements in the LUT. These
blocked cell faults are functionally irrelevant and untestable
under the single fault assumption. Hence, these cell faults are
excluded from the evaluation of the fault coverage (resulting
in 6162 LUT configuration bit faults for Clip3).

Table 3 shows for each accelerator i the amount of essential
bits (the bits associated with the design, a true subset of the

BAUER et al.: ONLINE TEST STRATEGIES FOR RELIABLE RECONFIGURABLE ARCHITECTURES 1503

configuration bits), the number of deterministic test patterns
Pi, as well as the numbers of LUT and stuck-at faults (Fi)
according to the underlying fault model, and the achieved
fault coverage (FCi) using the union of the individual test
pattern sets. For accelerators Clip3 and SADrow 4, the fault
coverage of cell faults in the LUTs is low. These faults are
proven untestable by the test generation tool, i.e. it is not
possible to select the value in the LUT by an input pattern
and propagate the value to an observable output.

TABLE 3
Accelerator dimensions and achieved fault coverage of PORT

for the hybrid fault model.

Essential
config.

size
[bits]

LUT config.
bit faults

Stuck-at
faults

Pi Fi FCi Fi FCi

Accelerator [count] [count] [%] [count] [%]

Clip3 65,608 549 6,162 55.84 1,644 92.63
CollapseAdd 22,836 176 1,012 100.00 728 90.24
LF BS4 48,653 241 2,184 98.12 1,528 98.03
LF Cond 27,681 1038 2,704 95.67 784 89.28
PointFilter 86,866 244 6,502 89.26 3,230 96.56
QuadSub 18,984 16 128 100.00 622 95.81
SADrow 4 39,380 715 4,060 65.96 1,164 95.70
SAV 34,242 393 2,170 96.26 1,102 92.83
Transform 48,762 218 4,136 100.00 1,356 98.52

Altogether, PORT sends 3,590 test patterns to the containers
which takes 35.9 µs at 100 MHz system frequency. The test
patterns and expected signatures for specific accelerators are
stored in an on-chip memory. For the accelerators in Table 3,
altogether 28,756 bytes are required for the test patterns and
signatures, which is roughly the size of a test configuration
bitstream for PRET (see Table 2). The required memory
occupies only 7 Block RAMs, approx. 4% of on-chip memory
resources in the Virtex-5 LX110T FPGA.

5.3.2 Estimation of PORT Effectiveness
We estimate the effectiveness of PORT-based periodic acceler-
ator testing by a stochastic model of the average time period
TCRIT where a fault is critical, i.e. it remains undetected in
the system. During this period TCRIT , a fault might cause
data corruption or system failure.

Since transient faults occur at a much higher rate than
aging induced faults, we focus on soft error induced corrup-
tion of the configuration bits causing structural or functional
changes in the accelerator. A fault is thus either detected
by PORT or removed by a regular container reconfiguration
(configuring a new accelerator).
TCRIT depends on the fault rate in the configuration bits

of the accelerators, the frequency of reconfigurations fC and
PORT executions fP , as well as the fault coverage of PORT.
Since our reconfigurable system allows to use multiple accel-
erators in different containers, we compute TCRIT as the sum
of the critical time T i

CRIT of each accelerator i , weighted by
Ui, the fraction of time accelerator i is instantiated and used.
The soft error rate of an accelerator SERi depends on the
system soft error rate SER and the number of configuration
bits in the accelerator: SERi = SER · sizei. Soft errors
are assumed to be uniformly distributed in space and time.
Finally, with the fault coverage FCi of PORT for accelerator

i and mission time t, we obtain:

TCRIT (t) =
∑
acc. i

T i
CRIT (FCi, fP , fC) · Ui · SERi · t (1)

To estimate T i
CRIT of an accelerator in the system, we

assume that reconfigurations (either caused by the applica-
tion or PRET) are performed with fixed frequency fC . PORT
fault coverage, accelerator size and usage are known from
fault simulation (Table 3), synthesis results and application
profiling.

The computation of T i
CRIT distinguishes the cases that:

(a) the fault occurs just before a reconfiguration and is
removed before PORT is executed, (b) the fault occurs, PORT
is executed and detects the fault such that the system can
trigger PRET or a reconfiguration, and (c) the fault occurs,
PORT is executed without detecting the fault which remains
undetected until the next reconfiguration. Assuming that the
PORT frequency is higher than the configuration frequency
fP ≥ fC > 0 Hz:

T i
CRIT (FCi, fP , fC) =

(a)︷ ︸︸ ︷
fC
fP

·
[
1

2

1

fP

]
+

(
1− fC

fP

)
·[

FCi ·
1

2

1

fP︸ ︷︷ ︸
(b)

+(1− FCi) ·
1

2

(
1

fC
+

1

fP

)
︸ ︷︷ ︸

(c)

]
(2)

= FCi ·
[
1

2

1

fP

]
+ (1− FCi) ·

[
1

2

1

fC

]
(3)

For fP = 0 Hz, T i
CRIT = 1

2
1
fC

. For fC = 0 Hz and FCi =

100%, T i
CRIT = 1

2
1
fP

. For fC = 0 Hz and FCi < 100%, T i
CRIT

is not bound.
The graph in Fig. 10 shows TCRIT in seconds for our

system with an SER of 1 soft error per day and MBit
configuration data and a mission time t of 1 day. TCRIT

is given in dependence of the reconfiguration frequency
fC , as well as PORT frequency fP . At the blue line fP is
equal to fC . On the right side of the line (fP < fC), the
application of PORT has no additional effect, whereas on the
left side (fP > fC), PORT lowers TCRIT . Fig. 10 shows that
TCRIT can be reduced by two orders of magnitude. Even at
low frequency, PORT reduces TCRIT significantly and thus
increases system availability.

5.3.3 PORT Scheduling
As presented in Section 4.3.2, one PORT is scheduled after
each reconfiguration and periodically over runtime to test
all containers for functional integrity. Since PORT is imple-
mented as a dedicated test-SI (Section 4.2), the application
execution time is affected by PORT. When the total execution
time without PORT is tbase, then the total execution time with
activated PORT tPORT can be expressed as

tPORT = tbase + tPORT · fP · d+ nC · d (4)

where fP is the frequency of periodic PORT executions, d is
the duration in cycles of one PORT execution, and nC is the
number of reconfigurations. Therefore, the performance loss
due to PORT is

tPORT − tbase
tbase

=
1 + nC · d/tbase

1− fP · d
− 1 (5)

1504 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

 1

 10

 20

 30

 40

 50 1000

100

10

1

10
-5

10
-4

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

TCRIT [s]

Configuration frequency fC [Hz]
PORT frequency fP [Hz]

TCRIT [s]

Fig. 10. Fault duration TCRIT until detection/removal depend-
ing on configuration frequency fC and PORT frequency fP .

Since for the H.264 video encoder the term nC · d/tbase is
significantly smaller than 1, the performance loss is dom-
inated by the periodic PORT. We have evaluated this by
simulations. The upper part of Table 4 shows the performance
loss due to PORT for different PORT frequencies from 143 Hz
to 1,000 Hz, i.e. test periods from 1 ms to 7 ms. For each
PORT frequency, the table shows the minimum and max-
imum performance loss of 10 reconfigurable systems with
different number of containers (5 to 14). The small difference
between the minimum and the maximum values shows that
PORT is basically unaffected by an increasing number of
containers. This is because one execution of a PORT test-
SI tests all containers at the same time (see Section 4.2).
Altogether, the performance overhead due to PORT is very
low (between 0.51% and 3.73%) and scales well with higher
PORT frequencies.

TABLE 4
PORT performance loss and worst case test latency under

different PORT frequencies.

PORT frequency [Hz]

Performance loss 143 167 200 250 333 500 1000

min.∗ [%] 0.51 0.59 0.72 0.89 1.20 1.81 3.68
max.∗ [%] 0.56 0.63 0.75 0.92 1.23 1.85 3.73

PORT frequency [Hz]

Worst case∗∗ test latency 143 167 200 250 333 500 1000

min.∗ [ms] 7.0 6.0 5.0 4.1 3.3 2.3 1.7
max.∗ [ms] 7.8 6.8 5.8 4.8 3.8 2.8 1.8
* Summarizing 10 reconfigurable systems with 5 to 14 containers.
** Corresponds to the longest time period in the whole runtime in

which a container remains untested.

In addition to the configured test frequency, the following
further situations affect the actual test latency of a container:

(1) If PORT is scheduled while an SI executes in hard-
ware, then PORT must be delayed until the SI
execution finishes.

(2) If PORT is scheduled right before or after an accel-
erator configuration, then all containers are tested

twice in a very short period.
(3) During the reconfiguration of a container, no PORT

can be executed for that container (no accelerator is
available in that container during reconfiguration).

In situations (1) and (3), the test latency of a container is
prolonged while in (2) it is shortened. The observed worst
case test latency, which corresponds to the longest untested
time period of a container is shown in the lower part of
Table 4.

5.3.4 Combined PRET and PORT Scheduling
With PRET and PORT both enabled, the reconfigurable sys-
tem is able to defend the configured accelerators against
structural faults induced by aging effects or latent defects and
transient events such as crosstalk or radiation. Since both test
schemes differ in their test intervals and test methods, they
do not interfere with each other. Fig. 11 shows the simulation
results for the performance loss of a reconfigurable system
with 5 containers when both PRET and PORT are enabled.
All combinations of PRET and PORT frequencies used in
previous sections are applied.

 1

 10

 100

 1000

 20
 25

 30
 35

 40

0

-1

-2

-3

-4

-5

 0

 1

 2

 3

 4

 5

Performance [%]

PORT frequency fP [Hz]Configuration frequency fC [Hz]

Performance [%]

Fig. 11. Performance loss when both PRET and PORT are
applied for a reconfigurable system with 5 containers.

The average configuration frequency fC is determined by
considering all reconfigurations, i.e. accelerator configura-
tions (AC) and test configurations (TC). The lowest config-
uration frequency of 17 Hz corresponds to the case where
on-demand and periodic PRET is disabled, i.e. only accel-
erator configurations are performed. When enabling PRET,
the configuration frequency doubles to 34–41 Hz, but due to
the PRET scheduling that distributes the TCs over time, the
performance loss remains limited.

The highest configuration frequency of 41 Hz in Fig. 11
is obtained for the highest on-demand PRET frequency of
1 TC/AC. For lower PRET frequencies (1 TC/2 ACs and
1 TC/3 ACs), the configuration frequencies reduce corre-
spondingly (35 Hz and 34 Hz). For an on-demand PRET fre-
quency of 1 TC/4 ACs, the configuration frequency increases
again (37 Hz), because more periodic PRETs are executed due
to the reduced number of on-demand PRETs. That explains
the bend that is visible in Fig. 11 for fC = 37 Hz.

For a PORT frequency fP of less than 100 Hz the per-
formance loss is dominated by the configuration frequency

BAUER et al.: ONLINE TEST STRATEGIES FOR RELIABLE RECONFIGURABLE ARCHITECTURES 1505

fC . After that point, the PORT frequency dominates the
performance loss, but also reduces TCRIT significantly (see
Fig. 10). The highest performance loss of 4.4% occurs for a
PORT frequency of 1,000 Hz and a configuration frequency
of 41 Hz. This setup leads to a significantly reduced TCRIT

of 64.7µs.

6 CONCLUSION

This paper presents efficient online test strategies for reliable
runtime-reconfigurable systems and their transparent system
integration. The pre-configuration online tests (PRET) and post-
configuration online tests (PORT) check if the reconfigurable
fabric is faulty and if the reconfiguration processes complete
without errors during runtime. The combination of both
test schemes and their non-concurrent execution allow a
significant reduction of the time a fault remains undetected
in the system.

The tight integration of the test schemes into the runtime
system and the system scheduling minimize the performance
overhead. During the non-concurrent test execution, system
operation is only marginally impacted for a few microsec-
onds.

The experimental results show that the application of the
presented strategies to a reconfigurable system results in
high fault-coverage and low test latency. The time a fault
remains undetected in the system is reduced by up to two
orders of magnitude at a performance loss of less than 4.4%.
A hardware prototype demonstrates the feasibility of the
proposed PRET and PORT based online test strategies.

ACKNOWLEDGMENTS

This work is supported in parts by the German Re-
search Foundation (DFG) as part of the priority pro-
gram “Dependable Embedded Systems” (SPP 1500 –
http://spp1500.itec.kit.edu).

REFERENCES
[1] Convey Comput., “Homepage of Convey Comput.” http://

www.conveycomputer.com/, accessed at August 15, 2012.
[2] S. Kirsch et al., “An FPGA-based High-Speed, Low-Latency

Processing System for High-Energy Physics,” in Proc. Int. Conf.
on Field Programmable Logic and Applications (FPL), 2010, pp.
562–567.

[3] P. Garcia et al., “An Overview of Reconfigurable Hardware in
Embedded Systems,” EURASIP J. on Emb. Syst., pp. 1–19, 2006.

[4] M. Shafique, L. Bauer, and J. Henkel, “Selective Instruction Set
Muting for Energy-Aware Adaptive Processors,” in Proc. Int.
Conf. on Comput.-Aided Design (ICCAD), 2010, pp. 353–360.

[5] N. Metha and A. DeHon, “Variation and Aging Tolerance in
FPGAs,” in Low-Power Variation-Tolerant Design in Nanometer
Silicon. Springer Science+Business, 2011.

[6] J. McPherson, “Reliability Challenges for 45nm and Beyond,”
in Proc. 43rd Design Automation Conf. (DAC), 2006, pp. 176–181.

[7] S. Bhunia and R. Rao, “Guest Editors’ Introduction: Managing
Uncertainty through Postfabrication Calibration and Repair,”
IEEE Design & Test of Comput. (D&ToC), vol. 27, no. 6, pp. 4–5,
2010.

[8] M. S. Abdelfattah et al., “Transparent Structural Online Test for
Reconfigurable Systems,” in Proc. 18th IEEE Int. On-Line Testing
Symp. (IOLTS), 2012, pp. 37–42.

[9] L. Bauer et al., “OTERA: Online Test Strategies for Reliable
Reconfigurable Architectures,” in Proc. NASA/ESA Conf. on
Adaptive Hardware and Syst. (AHS), 2012, pp. 38–45.

[10] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfig-
urable Computing. Springer, 2007.

[11] H. P. Huynh and T. Mitra, “Runtime Adaptive Extensible
Embedded Processors – A Survey,” in Proc. 9th Int. Workshop
on Emb. Comput. Syst.: Architectures, Modeling, and Simulation
(SAMOS), 2009, pp. 215–225.

[12] E. Lübbers and M. Platzner, “ReconOS: Multithreaded pro-
gramming for reconfigurable computers,” ACM Trans. in Emb.
Computing Syst. (TECS), vol. 9, no. 1, pp. 8:1–8:33, 2009.

[13] S. Vassiliadis et al., “The MOLEN polymorphic processor,” IEEE
Trans. on Comput. (TC), vol. 53, no. 11, pp. 1363–1375, 2004.

[14] L. Bauer, M. Shafique, and J. Henkel, “Concepts, Architectures,
and Run-time Systems for Efficient and Adaptive Reconfig-
urable Processors,” in Proc. NASA/ESA Conf. on Adaptive Hard-
ware and Syst. (AHS), 2011, pp. 80–87.

[15] R. Lysecky, G. Stitt, and F. Vahid, “Warp Processors,” ACM
Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 11, no. 3, pp. 659–681, 2006.

[16] M. Psarakis et al., “Microprocessor software-based self-testing,”
IEEE Design&Test of Comp. (D&ToC), vol. 27, no. 3, pp. 4–19,
2010.

[17] C. Stroud et al., “Built-in self-test of logic blocks in FPGAs
(Finally, a free lunch: BIST without overhead!),” in Proc. 14th
IEEE VLSI Test Symp. (VTS), 1996, pp. 387–392.

[18] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting single-
event upsets through Virtex partial configuration,” Xilinx Ap-
plication Notes, XAPP216 (v1. 0), 2000.

[19] A. Avizienis et al., “Basic Concepts and Taxonomy of Depend-
able and Secure Computing,” IEEE Trans. on Dependable and
Secure Computing (TDSC), vol. 1, no. 1, pp. 11–33, 2004.

[20] C. Stroud et al., “Built-in self-test of FPGA interconnect,” in
Proc. IEEE Int. Test Conf. (ITC), 1998, pp. 404–411.

[21] E. Chmelar, “FPGA interconnect delay fault testing,” in Proc.
IEEE Int. Test Conf. (ITC), 2003, pp. 1239–1247.

[22] P. K. Lala, Self-Checking and Fault-Tolerant Digital Design. Else-
vier, 2001.

[23] E. Stott, P. Sedcole, and P. Cheung, “Fault tolerant methods for
reliability in FPGAs,” in Proc. Int. Conf. on Field Programmable
Logic and Applications (FPL), 2008, pp. 415–420.

[24] F. L. Kastensmidt and R. Reis, Fault-Tolerance Techniques
for SRAM-Based FPGAs, ser. Frontiers in Electronic Testing.
Springer, 2010.

[25] J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms
for FPGA designs using triple modular redundancy,” in Proc.
ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays
(FPGA), 2010, pp. 249–258.

[26] S. Velusamy et al., “Monitoring temperature in FPGA based
SoCs,” in Proc. 23rd IEEE Int. Conf. on Comput. Design (ICCD),
2005, pp. 634–637.

[27] M. Agarwal et al., “Circuit Failure Prediction and Its Applica-
tion to Transistor Aging,” in Proc. 25th IEEE VLSI Test Symp.
(VTS), 2007, pp. 277–286.

[28] S. Durand and C. Piguet, “FPGAs with self-repair capabilities,”
in Proc. ACM Int. Workshop on Field Programmable Gate Arrays
(FPGA), 1994, pp. 1–6.

[29] J. Emmert et al., “Dynamic fault tolerance in FPGAs via partial
reconfiguration,” in Proc. IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), 2000, pp. 165–174.

[30] S. Mitra et al., “Reconfigurable architecture for autonomous
self-repair,” IEEE Design & Test of Comput. (D&ToC), vol. 21,
no. 3, pp. 228–240, 2004.

[31] A. Jacobs, A. George, and G. Cieslewski, “Reconfigurable fault
tolerance: A framework for environmentally adaptive fault mit-
igation in space,” in Proc. 19th Int. Conf. on Field Programmable
Logic and Applications (FPL), 2009, pp. 199–204.

[32] A. Krasniewski, “Application-Dependent Testing of FPGA De-
lay Faults,” in Proc. 25th EUROMICRO Conf., vol. 1, 1999, pp.
260–267.

[33] M. Tahoori, “Application-Dependent Testing of FPGAs,” IEEE
Trans. on Very Large Scale Integ. (VLSI) Syst., vol. 14, no. 9, pp.
1024–1033, 2006.

[34] C. Stroud, “Ch. 12.4 Field Programmable Gate Array Testing,”

1506 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013

in VLSI Test Principles and Architectures, L. Wang, C. Wu, and
X. Wen, Eds. Morgan Kaufmann, 2006.

[35] A. Van De Goor, “Using march tests to test SRAMs,” IEEE
Design & Test of Comput. (D&ToC), vol. 10, no. 1, pp. 8–14, 1993.

[36] K. Radecka, J. Rajski, and J. Tyszser, “Arithmetic Built-In Self-
Test for DSP Cores,” IEEE Trans. on Comput.-Aided Design of
Integr. Circuits and Syst. (TCAD), vol. 16, no. 11, pp. 1358–1369,
1997.

[37] W. K. Huang et al., “Testing configurable LUT-based FPGA’s,”
IEEE Trans. on Very Large Scale Integ. (VLSI) Syst., vol. 6, no. 2,
pp. 276–283, 1998.

[38] M. Renovell et al., “Testing the interconnect of RAM-based
FPGAs,” IEEE Design & Test of Comput. (D&ToC), vol. 15, no. 1,
pp. 45–50, 1998.

[39] A. Friedman, “Easily Testable Iterative Systems,” IEEE Trans.
on Comput. (TC), vol. C-22, no. 12, pp. 1061–1064, 1973.

[40] M. Renovell, “SRAM-based FPGAs: a structural test approach,”
in Proc. 11th Symp. on Integr. Circuit Des. (SBCCI), 1998, pp. 67–
72.

[41] P. Sundararajan, S. Mcmillan, and S. A. Guccione, “Testing
FPGA Devices Using JBits,” in Proc. Military and Aerospace
Applications of Programmable Devices and Technologies Conf.
(MAPLD), 2001.

[42] C. Stroud et al., “Built-in self-test of FPGA interconnect,” in
Proc. IEEE Int. Test Conf. (ITC), 1998, pp. 404–411.

[43] X. Sun et al., “Novel technique for built-in self-test of FPGA
interconnects,” in Proc. IEEE Int. Test Conf. (ITC), 2000, pp. 795–
803.

[44] M. Tahoori and S. Mitra, “Application-independent testing of
FPGA interconnects,” IEEE Trans. on Comput.-Aided Design of
Integr. Circuits and Syst. (TCAD), vol. 24, no. 11, pp. 1774–1783,
2005.

[45] M. B. Tahoori, “Using satisfiability in application-dependent
testing of FPGA interconnects,” in Proc. ACM/IEEE Design
Automation Conf., 2003, pp. 678–681.

[46] H. Almurib, T. Kumar, and F. Lombardi, “A single-
configuration method for application-dependent testing of
SRAM-based FPGA interconnects,” in 20th Asian Test Symp.
(ATS), 2011, pp. 444 –450.

[47] V. Verma, S. Dutt, and V. Suthar, “Efficient On-line Testing of
FPGAs with Provable Diagnosabilities,” in Proc. 41th Design
Automation Conf. (DAC), 2004, pp. 498–503.

[48] D. Milton, S. Dhingra, and C. E. Stroud, “Embedded Processor
Based Built-In Self-Test and Diagnosis of Logic and Memory
Resources in FPGAs,” in Proc. Int. Conf. on Emb. Syst. and
Applications (ESA), 2006, pp. 87–93.

[49] J. Emmert, C. Stroud, and M. Abramovici, “Online Fault Tol-
erance for FPGA Logic Blocks,” IEEE Trans. on Very Large Scale
Integ. (VLSI) Syst., vol. 15, no. 2, pp. 216–226, 2007.

[50] B. F. Dutton and C. E. Stroud, “Soft Core Embedded Processor
Based Built-In Self-Test of FPGAs,” in Proc. 24th IEEE Int. Symp.
on Defect and Fault Tolerance in VLSI Syst. (DFT), 2009, pp. 29–37.

[51] M. Abramovici, C. E. Stroud, and J. M. Emmert, “Online BIST
and BIST-Based Diagnosis of FPGA Logic Blocks,” IEEE Trans.
on Very Large Scale Integ. (VLSI) Syst., vol. 12, no. 12, pp. 1284–
1294, 2004.

[52] M. Abramovici et al., “Using roving STARs for on-line testing
and diagnosis of FPGAs in fault-tolerant applications,” in Proc.
IEEE Int. Test Conf. (ITC), 1999, pp. 973–982.

[53] L. Wang, C. Wu, and X. Wen, VLSI Test Principles and Architec-
tures: Design for Testability. Morgan Kaufmann, 2006.

[54] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent Autonomous
Chip Self-Test Using Stored Test Patterns,” in Proc. Design,
Automation and Test in Europe (DATE), 2008, pp. 885–890.

[55] Y. Li, O. Mutlu, and S. Mitra, “Operating System Scheduling
for Efficient Online Self-Test in Robust Syst.” in Proc. ACM Int.
Conf. on Comput.-Aided Design (ICCAD), 2009, pp. 201–208.

[56] H. Inoue, Y. Li, and S. Mitra, “VAST: Virtualization-Assisted
Concurrent Autonomous Self-Test,” in Proc. IEEE Int. Test Conf.
(ITC), 2008, pp. 1–10.

[57] W. H. Kautz, “Testing for faults in combinational cellular logic
arrays,” in Proc. 8th Symp. on Switching and Automata Theory

(SWAT), 1967, pp. 161–174.
[58] M. Psarakis, D. Gizopoulos, and A. Paschalis, “Test Generation

and Fault Simulation for Cell Fault Model using Stuck-at Fault
Model based Test Tools,” J. of Electronic Testing, vol. 13, no. 3,
pp. 315–319, 1998.

[59] S. Makar and E. McCluskey, “Functional tests for scan chain
latches,” in Proc. IEEE Int. Test Conf. (ITC), 1995, pp. 606–615.

[60] C. Beckhoff, D. Koch, and J. Torresen, “The Xilinx Design
Language (XDL): Tutorial and use cases,” in Proc. Int. Workshop
on Reconf. Comm.-centric Syst.-on-Chip (ReCoSoC), 2011, pp. 1–8.

[61] A. Grudnitsky, L. Bauer, and J. Henkel, “Partial Online-
Synthesis for Mixed-Grained Reconfigurable Architectures,” in
Proc. Design, Automation and Test in Europe (DATE), 2012, pp.
1555–1560.

[62] L. Bauer, M. Shafique, and J. Henkel, “A Computation- and
Communication- Infrastructure for Modular Special Instruc-
tions in a Dynamically Reconfigurable Processor,” in Proc. Int.
Conf. on Field Programmable Logic and Applications (FPL), 2008,
pp. 203–208.

[63] Aeroflex Gaisler, “Homepage of the Leon Processor,” http://
www.gaisler.com/leonmain.html, accessed at August 15, 2012.

[64] M. Shafique, L. Bauer, and J. Henkel, “Optimizing the
H.264/AVC Video Encoder Application Structure for Recon-
figurable and Application-Specific Platforms,” J. of Signal Pro-
cessing Syst. (JSPS), vol. 60, no. 2, pp. 183–210, 2009.

Lars Bauer received his M.Sc. and Ph.D. in CS
from the University of Karlsruhe, Germany in 2004
and 2009, respectively. He is currently a research
assistant, lecturer, and group leader at the Chair for
Embedded Systems (CES) at the Karlsruhe Institute of
Technology (KIT). He received the EDAA Outstanding
Dissertations Award, the FZI Outstanding Disserta-
tion Award, the AHS’11 best paper award, and the
DATE’08 best paper award for his work on adaptive
reconfigurable processors. He is a member of the
IEEE.

Claus Braun received the Diploma degree in computer science from the
University of Tübingen, Germany, in 2008. He joined the Institute for Computer
Architecture and Computer Engineering, University of Stuttgart, in 2008.
His current research interests include fault tolerance and parallel computer
architectures. He is a member of the IEEE.

Michael E. Imhof received the Diploma degree in computer science from the
University of Stuttgart, Germany, in 2005. He joined the Institute for Computer
Architecture and Computer Engineering, University of Stuttgart, in 2006. His
current research interests include fault tolerance and variation-aware test. He
is a student member of the IEEE and the IEEE Computer Society.

Michael A. Kochte received the Diploma degree in computer science from the
University of Stuttgart, Germany, in 2005. He joined the Institute for Computer
Architecture and Computer Engineering, University of Stuttgart, in 2007. His
current research interests include test generation, fault simulation, and fault
tolerance. He is a student member of the IEEE and the IEEE Computer
Society.

Eric Schneider received the Diploma degree in computer science from the
University of Stuttgart, Germany, in 2012. He joined the Institute for Computer
Architecture and Computer Engineering, University of Stuttgart, in 2012. His
current research interests include circuit simulation, test and diagnosis.

Hongyan Zhang received the M.Sc. in Electrical En-
gineering and Information Technologies from the Karl-
sruhe Institute of Technology in 2011. He joined the
Chair for Embedded Systems (CES) at the Karlsruhe
Institute of Technology (KIT) in 2011. His research
interests include fault tolerant and reliable runtime
reconfigurable architectures. He is a student member
of the IEEE.

BAUER et al.: ONLINE TEST STRATEGIES FOR RELIABLE RECONFIGURABLE ARCHITECTURES 1507

Jörg Henkel is with the Karlsruhe Institute of Technol-
ogy (KIT), Karlsruhe, Germany, where he is directing
the Chair for Embedded Systems (CES). Prior to that,
he was with NEC Laboratories, Princeton, NJ. He
holds ten US patents. His current research is focused
on design and architectures for embedded systems
with focus on low power and reliability. Prof. Henkel
was the recipient of the 2008 DATE Best Paper Award,
the 2009 IEEE/ACM William J. McCalla ICCAD Best
Paper Award and the Codes+ISSS 2011 Best paper
Award. He is the Chairman of the IEEE Computer

Society, Germany Section, and the Editor-in-Chief of the ACM Transactions on
Embedded Computing Systems. He is an initiator and the spokesperson of the
national priority program “Dependable Embedded Systems” of the German
Science Foundation. He is the General Chair of ICCAD 2013. He is a member
of the IEEE and the IEEE Computer Society.

Hans-Joachim Wunderlich received a Diploma in
Mathematics from the University of Freiburg in 1981
and the Dr. rer. nat. (Ph.D.) from the University of Karl-
sruhe in 1986. Since 1991 he has been a full Professor
and since 2002 he has been the director of the Institute
of Computer Architecture and Computer Engineering
at the University of Stuttgart. He is editor of various
international journals and program committee member
of a variety of IEEE conferences on design and test
of electronic systems. Hans-Joachim Wunderlich has
published 11 books and book chapters and more than

200 reviewed scientific papers in journals and conferences. His research
interests include test, reliability and fault tolerance of microelectronic systems.
Hans-Joachim Wunderlich is a fellow of IEEE. He is a fellow of the IEEE.

