
Module Diversification: Fault Tolerance and Aging Mitigation
for Runtime Reconfigurable Architectures

Hongyan Zhang∗, Lars Bauer∗, Michael A. Kochte‡, Eric Schneider‡, Claus Braun‡, Michael E. Imhof‡,
Hans-Joachim Wunderlich‡ and Jörg Henkel∗

∗Chair for Embedded Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
‡Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Germany

Abstract—Runtime reconfigurable architectures based on
Field-Programmable Gate Arrays (FPGAs) are attractive for
realizing complex applications. However, being manufactured in
latest semiconductor process technologies, FPGAs are increas-
ingly prone to aging effects, which reduce the reliability of such
systems and must be tackled by aging mitigation and application
of fault tolerance techniques.

This paper presents module diversification, a novel design
method that creates different configurations for runtime re-
configurable modules. Our method provides fault tolerance by
creating the minimal number of configurations such that for
any faulty Configurable Logic Block (CLB) there is at least
one configuration that does not use that CLB. Additionally, we
determine the fraction of time that each configuration should
be used to balance the stress and to mitigate the aging process
in FPGA-based runtime reconfigurable systems. The generated
configurations significantly improve reliability by fault-tolerance
and aging mitigation.

Keywords-Reliability, online test, fault-tolerance, aging mitiga-
tion, partial runtime reconfiguration, FPGA

I. INTRODUCTION

Today’s Field-Programmable Gate Arrays (FPGAs) allow to
reconfigure selected regions of the FPGA’s fabric at runtime
without affecting operation in other regions by support of
partial runtime reconfiguration. This provides a high degree
of flexibility and efficiency, as the FPGA can be optimized for
the requirements of any application at any point in time. This
flexibility is for instance used in commercially available high-
performance computing systems to provide hardware acceler-
ators for the executing application [1]. Especially area, cost,
and power constraint embedded systems benefit from the large
potential of runtime reconfiguration. For instance, software
defined radios can be realized by reconfiguring the wireless
protocol into the FPGA at runtime [2] to support a large
number of protocols in a small area footprint. Similarly, dif-
ferent encryption standards can be provided on demand using
runtime reconfiguration [3]. In systems with diverse functional
requirements such as vision-based robotics or automotive [4],
runtime reconfiguration is used to provide hardware accelera-
tion for those tasks that have a high priority at a certain point in
time. An overview of further embedded applications benefiting
from runtime reconfigurable architectures is provided in [5].

In all these examples, the flexibility of runtime reconfigu-
ration is used to build architectures that are able to instantiate
hardware accelerators in the reconfigurable fabric according to
runtime application requirements. In the following, a region
of the FPGA that can be reconfigured at runtime is called

container and the design that is reconfigured into a container
is called module.

Modern FPGAs are often manufactured in latest semicon-
ductor process technologies (e.g. 28 nm for Xilinx Virtex-7
and Altera Stratix V) and thus are increasingly prone to
various sources of defects [6]. Aging mechanisms like Time-
Dependent Dielectric Breakdown (TDDB), Hot Carrier In-
jection (HCI), Negative Bias Temperature Instability (NBTI),
and Electromigration have severe impact on FPGA hardware
structures [7]. The rate of degradation due to aging effects de-
pends on different stress factors such as temperature, switching
activity, or electric field strengths in the devices [8]. Systems
must be capable of coping with aging effects, variations,
and latent defects in the reconfigurable fabric, which can
cause unrecoverable permanent faults. These reliability threats
are further aggravated by long operation time and harsh
environmental conditions (e.g. temperature). To ensure reliable
operation of the reconfigurable fabric and prolong the lifetime
of the device, aging mitigation, fault detection, and fault
tolerance techniques need to be an integral part of runtime
reconfigurable architectures.

This paper presents a novel design method called module
diversification to 1) tolerate permanent and intermittent
faults and 2) mitigate the aging process. In general terms, for
each module/container pair, a set of configurations is generated
that is diversified in terms of the usage of Configurable Logic
Blocks (CLBs) such that for every CLB in the container, there
always exists a configuration that does not require that CLB.

We consider a CLB as faulty if it is affected by one or
multiple permanent or intermittent faults. We do not distin-
guish the type of faults within a CLB. The proposed module
diversification enables the system to tolerate at least any single
CLB-fault. The detection and localization of a faulty CLB is
not the scope of this paper, but can be performed by structural
testing and diagnosis at CLB granularity [9, 10]. If a fault is
localized in a container, a diversified configuration of a module
can be loaded (i.e. reconfigured to the container at runtime)
that does not use the faulty CLB.

This paper provides a general algorithm to generate
the minimal set of configurations for tolerating single
CLB-faults and additional configurations for multi-fold
CLB-fault tolerance. The relationship between the required
number of configurations, amount of spare resources, and
reliability is investigated in this paper. In addition, since the
number of these configurations shall be as small as possible
to reduce storage overhead, these alternative configurations are

Paper 14.1
978-1-4799-0859-2/13/$31.00 c©2013 IEEE

INTERNATIONAL TEST CONFERENCE 1

inherently highly diversified, i.e. the number of common CLBs
of two different configurations is as small as possible.

Loading new configurations on demand is readily sup-
ported by architectures that use runtime reconfiguration as
part of their regular operation. They provide means to tolerate
temporary unavailability of a module. For instance, runtime
reconfigurable processors that use the reconfigurable fabric
to implement so-called Special Instructions typically use an
alternative software implementation of the Special Instruction
when the hardware module is not reconfigured [11, 12].

In addition to tolerating faults, module diversification can
be used to mitigate the aging process. The aging process of
a CLB can be slowed down by reducing its stress duty cycle.
The inherent diversity of the generated configurations for fault
tolerance allows to balance the stress on all CLB resources and
thus mitigate the aging process in the reconfigurable fabric
by loading these configurations in an alternating manner. The
aging-related stress values of CLBs in each configuration are
estimated after synthesis and place-and-route. Whenever a
hardware module is loaded into a container, an appropriate
diversified configuration for that module is selected, so that
stress is distributed to all CLBs in the container and not
concentrated on a single or a few CLBs. Therefore, stress
balancing is fully transparent to the normal operation of the
reconfigurable architecture.

This paper formulates and optimally solves the prob-
lem of balancing the stress on CLBs using diversified
configurations as a linear programming problem. Thus,
the optimal scheduling policy of configurations is determined,
i.e. how long a configuration shall be used relative to other
configurations.

The proposed module diversification design method focuses
on permanent and intermittent CLB-faults as well as aging
mitigation and is orthogonal to established methods for soft
error mitigation.

Contribution of this paper:
1) The module diversification design method.
2) An algorithm that generates the minimal set of config-

urations to tolerate all single CLB-faults.
3) An optimal schedule of diversified configurations for

aging mitigation by stress balancing.
Paper structure: Section II gives an overview of the related

work in the field of reconfigurable architectures and fault tol-
erant systems. Section III describes the module diversification
design method and the reliability analysis of generated config-
urations. Section IV presents the stress balancing method using
the diversified configurations. The overall implementation flow
of module diversification is shown in Section V. Section VI
presents the experimental results on benchmark modules and
Section VII concludes the paper.

II. RELATED WORK

Recovery schemes for permanent faults in reconfigurable
systems are based on resource remapping. The FPGA is
partially reconfigured to an alternative configuration using
spare resources after the faults are detected and located so that

the faulty resources are no longer used. The reconfiguration is
performed either offline or during runtime.

A. Online Test and Diagnosis of Reconfigurable Systems

Online test and diagnosis methods are a prerequisite for fault
recovery in reconfigurable systems. The thorough test of the
reconfigurable FPGA fabric has been in the focus of research
for over 20 years. Application independent testing targets the
whole fault universe of the fabric and is not limited to a
specific use of the fabric. They typically consist of multiple
special test configurations and corresponding test stimuli [13].
In contrast, application dependent tests target only the subset
of programmable resources of the FPGA fabric relevant for a
particular target application [14].

For an online test in the field, external equipment or circuitry
for test pattern generation or output response analysis is not
available. Internal testing approaches based on built-in self-test
(BIST) principles include test pattern generation and output
response analysis in the circuit under test [15].

With the use of partial dynamic reconfiguration in FPGAs,
the reconfigurations during test application can be performed
by an external or embedded processor at runtime [16–19]. In
[18, 19], the Roving STARs (Self Testing AReas) method for
online test is introduced which partitions the FPGA into rows
and columns which can be either used functionally or tested
by an online BIST approach.

The transparent integration of online test methods into run-
time reconfigurable architectures was presented in [10, 20]. It
was shown that online testing concurrent to system operation
causes a negligible performance impact of less than 1%.

In addition to testing, the homogeneous structure of an
FPGA allows the efficient diagnosis of faulty components.
High resolution is achieved by failure data analysis and addi-
tional dedicated test configurations to distinguish and localize
faults [9, 21, 22].

Similar to the integration of online tests into runtime re-
configurable architectures [20], diagnosis techniques based on
diagnostic configurations, stimuli and response evaluation can
be integrated and controlled by an embedded processor [17].

B. Fault Tolerance in Reconfigurable Systems

Once a fault is detected and localized, different recovery
methods can be applied to ensure continued system operation
despite of the fault. Tile-based fault tolerance techniques
partition the reconfigurable fabric into a 2-dimensional array of
rectangular regions (tiles) [23, 24]. In [23] each tile consists of
multiple CLBs with one spare CLB. If a CLB in a certain tile is
detected to be faulty, an alternative configuration for that tile is
loaded which implements the same logic function but utilizes
the spare rather than the faulty CLB in order to avoid the
fault. In [24] the circuit in the faulty tile is entirely remapped
to another spare tile. Column-based approaches apply similar
concepts to CLB columns [25, 26], where the reconfigurable
fabric is partitioned into a 1-dimensional array of CLB
columns. Each column can implement a functional module
and in order to provide fault tolerance, intentionally unused
columns are introduced as spares. In response to a fault,

Paper 14.1 INTERNATIONAL TEST CONFERENCE 2

a precompiled configuration is loaded where the functional
module that resides in the faulty column has been remapped by
shifting the functional modules starting from the faulty column
towards the next unused spare. Both tile- and column-based
approaches need complex customized routing techniques. Tile-
based approaches require fixed interfaces between adjacent
tiles so that each tile can be reconfigured independently of
others. Column-based approaches require online routing after
module remapping as the location of the functional modules
change and the communication in-between has to be re-
established. They also do not maximize the inherent diversity
in alternative configurations or exploit it to balance the stress
on the reconfigurable fabric.

The Roving STARs based fault tolerance method [19]
combines distributed CLB spares and online compilation of
configurations to replace faulty CLBs with spares. For com-
plex designs, this online compilation or synthesis may result
in unpredictable timing behavior.

Instead, the method proposed here works on CLB-
granularity and does not need explicit tile/column-wise par-
titioning or online synthesis. The CLB placement and routing
of the alternative configurations is prepared offline by vendor
place-and-route tools.

The authors in [8] introduce a scheme to alleviate aging
mechanisms through remapping of a design. This approach is
coarse-grained and uses only two different configurations. The
configurations are swapped only once after a half-life period of
the first failing component and it does not guarantee tolerance
to CLB-faults.

A similar approach was introduced in [27], where the au-
thors presented three strategies for FPGA wear-leveling based
on signal state inversion, use of spare resources for timing
critical functions and alternative placement. Since only two
different configurations are used, the effectiveness is limited.

The authors of [28] propose the idea of using alternative
configurations for reconfigurable modules, each of which
uses different CLBs such that any possible single defective
CLB is tolerated. However, they do not provide a method
to automatically generate these configurations. They neither
investigate the possibility of tolerating multiple CLB faults in
general nor do they consider mitigation of aging effects within
the reconfigurable fabric.

In this work, we present the method of diversified configu-
rations for single CLB-fault tolerance. It can be implemented
using standard vendor tools. The potential of diversified
configurations to further tolerate multi-fold CLB faults and
mitigate aging for increased reliability is also exploited and
evaluated.

III. MODULE DIVERSIFICATION

A. Design Method

A module defines the logic functions to be implemented in a
container which consists of CLBs that are arranged regularly
in a 2-dimensional array in the FPGA. The configuration
determines which CLBs in the container are used to implement
the module. A natural way to describe the CLB usage of a

configuration is to use a Boolean matrix. The size of the matrix
matches the size of the container: A rectangular container with
m CLBs in height and n CLBs in width requires an m × n
matrix. If a CLB is used, the corresponding matrix element
is 1, otherwise 0. We call this Boolean matrix a configuration
matrix. For example, a module configuration using 5 CLBs
implemented in a 3×3 container can be represented in a
configuration matrix A:

A =

1 1 1
1 1 0
0 0 0

 (1)

The module diversification design method generates a set
of configurations, each of which implements the same module
function, but uses different CLB resources, such that by
loading diversified module configurations at runtime: 1) any
single faulty CLB can be tolerated and 2) the stress on CLBs
can be balanced in order to mitigate aging.

Formally, we search a set of configurations C for a module
implemented in an m×n container.

C = {A1, · · · ,Aw}, Ak : m×n Boolean matrix (2)

Assume that all of these configurations utilize the same
amount of CLBs U and there is at least one free CLB, i.e.

∀Ak ∈ C :
∑
i,j

[Ak]i,j = U < m · n (3)

To be able to tolerate any single faulty CLB, this set of
configurations must satisfy the completeness condition:

∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n :

∃Ak ∈ C such that [Ak]i,j = 0
(4)

The completeness condition guarantees that if any CLB is
detected to contain faults, there always exists a diversified
configuration Ak that does not require the faulty CLB. This
condition can be easily verified by checking whether:

∑
i,j

w∏
k=1

[Ak]i,j = 0 (5)

Eq. 5 states that there is no CLB that is used by all
configurations. For an m × n matrix with m · n − U spares,
at least wmin configurations are required for the completeness
condition:

wmin = d m·n
m·n−U e (6)

In each configuration, exactly m · n − U CLBs are spare.
For a configuration Ak, at most m · n − U CLBs that were
not spare in any of the configurations Al, l < k can be spare
in Ak, which directly results in this lower bound.

In order to minimize the number of diversified configura-
tions for satisfying the completeness condition and to improve
the effect of aging mitigation, we require that the generated

Paper 14.1 INTERNATIONAL TEST CONFERENCE 3

set of configurations also satisfies the max diversification
condition:

∀k, 1 ≤ k ≤ w : ∃Al ∈ C, l 6= k such that∑
i,j

([Ak]i,j · [Al]i,j) =

{
2U −m · n if U > 1

2
m · n

0 else
(7)

We define that two configurations are maximally diversified
if the difference between them is maximized. The minimum
number of common CLBs between two configurations is either
0, if the module requires at most half of the available CLB
resources, or 2U−m·n, whenever all unused CLBs (m·n−U)
in one configuration are used in the other configuration. In the
latter case, the number of common CLBs is U − (m · n −
U). The max diversification condition states that for every
configuration Ak ∈ C there is at least one other configuration
Al which differs from Ak as much as possible w.r.t. the used
CLB resources. The max diversification condition also ensures
that the stress on each CLB can be minimized by loading
diversified configurations in an alternating manner.

For example, consider a module requiring 5 CLBs to
be implemented in a 3×3 container. The following set of
configurations satisfies the completeness condition but does
not satisfy the max diversification condition:

A1 =

[
1 1 1
1 0 0
1 0 0

]
, A2 =

[
0 0 1
1 1 1
0 1 0

]
, A3 =

[
1 1 0
0 1 1
0 1 0

]
(8)

When 5 out of 3×3 CLBs are used, the minimal possible
number of common CLBs between two configurations is 1
CLB (see Eq. 7). Yet, in the above 3 configurations, all pairs of
configurations have at least 2 CLBs in common. One possible
set of configurations that satisfies both conditions is as follows:

A1 =

[
1 1 1
1 0 0
1 0 0

]
, A2 =

[
0 0 0
0 1 1
1 1 1

]
, A3 =

[
1 1 1
1 0 1
0 0 0

]
(9)

As we will see later in Section IV, the first set of configu-
rations causes worse balanced stress than the second one.

To find a maximally diversified set of configurations, enu-
meration is computationally intractable. For example, if a mod-
ule requires 80 CLBs in a container with 100 CLBs, then there
are (100

80) ≈ 5.36× 1020 possible configurations. Algorithm 1
presents the generation of a given number of configurations
that satisfy the completeness condition and maximizes their
diversity. It incrementally generates diversified configurations
from an initial configuration A1.

In line 1, the set of diversified configurations C is initialized
with the initial configuration. The score matrix S, which has
the same size of the configuration matrix, stores for each
CLB the number of diversified configurations which use that
CLB. The score matrix is simply the sum of all configuration
matrices in C. In line 2, S is initialized to A1, the only element
in C at the moment. In line 3, the next new configuration
matrix Anew is initialized to the initial configuration matrix. In
the inner loop (line 8 to 16), it is further modified by swapping
zero- and one-elements. The inner loop iterates through all

Algorithm 1 Generation of diversified configurations C
1. C := {A1} // A1 is the initial configuration
2. S := A1 // Score matrix S stores swapping priority of CLBs
3. Anew := A1

4. loop
5. zero elem list := {(i, j) | [Anew]i,j = 0} // unused CLBs
6. candidates list := {(i, j) | [Anew]i,j = 1}
7. sort candidates list according to the value of Si,j in de-

scending order // first element has the highest score
8. for all (i, j) in zero elem list do
9. swap candidates := {(x, y) | (x, y) ∈ candidates list

and Sx,y = Scandidates list[0]} // all CLBs with the highest
score

10. farthest swap candidate := (x, y) ∈ swap candidates
with max. Manhattan distance between (x, y) and (i, j)
// farthest elements are swapped first so that CLBs are
located near each other and better timing is achieved

11. swap([Anew]i,j , [Anew]farthest swap candidate)
12. candidates list.remove(farthest swap candidate)
13. if candidates list = ∅ then
14. break
15. end if
16. end for
17. while Anew ∈ C do
18. swap a random zero- with random one-element in Anew

19. end while
20. S := S+Anew // update CLB score
21. C := C ∪ {Anew}
22. if |C| = desired number of configurations∨|C| = (m·n

U) then
23. break
24. end if
25. end loop

zero-elements in Anew and swaps zero-elements with one-
elements in Anew in an order determined by the score matrix
(line 7). If a CLB has a higher score (i.e. it is used many times
in diversified configurations), its corresponding one-element
in Anew will be first swapped. If there are several CLBs
with the same score, the farthest one from the current zero-
element is swapped first (line 9 to 11) so that in the resulting
configuration used CLBs are located near each other.

The first generated d m·n
m·n−U e configurations is the minimal

set of configurations that satisfies both the completeness and
max diversification condition. It is guaranteed that the random
swapping (line 18) does not occur while generating the mini-
mal set. In the generation process of the minimal set, the CLBs
that are used most by already generated configurations are
not included as resources in the next generated configuration
Anew. The number of common CLBs in Anew and the last
generated configuration is always 2U−m ·n and therefore the
max diversification condition is guaranteed.

If the user requires more configurations for higher re-
liability (i.e. tolerate more multi-fold CLB-faults), further
possible configurations can be generated (this might use the
random swapping in line 18 at some time). The algorithm
terminates when either the desired number of configurations
or all possible configurations have been generated. In both
cases, the generated set of configurations always satisfies the
completeness condition but may violate the max diversification
condition due to the while loop from line 17 to line 19, where

Paper 14.1 INTERNATIONAL TEST CONFERENCE 4

random changes are made to Anew to generate a new unique
configuration matrix.

B. Reliability Analysis

The reliability of an entity is the probability that it operates
without failure for at least the specified time period t. Let
RCLB(t) be the reliability of a CLB at time t. Without any
fault-tolerance techniques applied, the reliability of a module
using U out of m× n CLBs is

RNo FT(t) = RCLB(t)U , (10)

i.e. all U CLBs are required to be operational to allow the
module to operate without failure. Using the proposed module
diversification design method, the reliability of the module
can be increased: In case of CLB failures, the module can
be reconfigured with a diversified configuration such that only
operational CLBs are used by the configured module. In this
case, the reliability of the module becomes:

RDiv(t) = RCLB(t)m·n+
m·n∑
f=1

Cfαf

(
m · n
f

)
(1−RCLB(t))fRCLB(t)(m·n−f)︸ ︷︷ ︸

Probability that f -fold CLB failures can be tolerated

(11)

The first term states the probability that all CLBs are fault
free. The second term aggregates all the scenarios where only
a single CLB is faulty, two CLBs are faulty, three CLBs are
faulty, . . ., all CLBs are faulty.

Fault coverage Cf , 0 ≤ Cf ≤ 1, is the fraction of f -
fold CLB faults which are detected by an online test or
concurrent error detection scheme (c.f. Section II-A) such
that reconfiguration with a diversified configuration allows to
continue module operation.

The number αf , 0 ≤ αf ≤ 1 denotes the fraction of
f -fold CLB faults which can be tolerated with the set of
configurations generated by the module diversification design
method. For example, α2 = 0.5 means 50% of 2-CLB faults
can be tolerated by loading a diversified configuration. The
completeness condition of Eq. 4 guarantees that any single
CLB fault can be tolerated. Therefore, for every generated set
of configurations we have α1 = 1. The values of αf for f ≥ 2
depend on the placement details of each configuration and
need to be calculated from the generated set of configurations.

C. Module Diversification for Interconnect Resources

The proposed module diversification design method is in
principle applicable for all regularly distributed resources of
the fabric. In Xilinx FPGAs, the routing resources are regularly
distributed: One programmable switching matrix is attached
to each CLB. Thus, the resource usage patterns for target
configurations computed by the proposed method can also
diversify the use of programmable routing resources.

IV. STRESS BALANCING

The reliability degradation of nano-CMOS circuits due to
aging and wearout depends on operational and functional
factors as well as on process parameters. These include stress
conditions such as temperature, time period of operation, or
electrical field strengths. Balancing the CLB stress by using
different configurations allows to slow down the aging process
and to increase the reliability of individual CLBs. Balancing
can be done by using the diversified configurations in an
alternating way by reconfiguring them at runtime. In doing
so, the lifetime of a reconfigurable system is prolonged.

In Section IV-A, we present a general stress balancing
method using the diversified configurations to reduce the
maximum accumulated stress in the CLBs of a container.
Section IV-B explains the application of the general method
to two different aging mechanisms.

A. Scheduling for Minimum Stress

By scheduling the diversified configurations in an alternat-
ing manner, the maximum stress accumulated in the individual
CLBs of a container can be reduced. Here, the stress of
a CLB may represent different stress conditions for aging
mechanisms, such as switching activity or voltage potential of
the transistors. CLBs which are not used in a configuration can
be set into an unstressed or relaxing mode [8]. The particular
mode depends on the aging mechanism.

For each configuration A, a stress matrix AS is constructed
which contains the stress for each CLB imposed by configu-
ration A. Positive values in [AS]i,j imply that the CLB (i, j)
degrades under the particular configuration. Negative values
in [AS]i,j can be used to express recovery effects as found,
for instance, in NBTI aging [29]. The stress matrix for the
configuration in Eq. 1 could be:

AS =

21.6 4.1 36.0
15.9 11.3 0

0 0 0

 (12)

Based on the stress matrices for the configurations, we
search for the fraction of time each configuration should be
active (loaded into a container and used for computation) such
that the accumulated stress of the CLBs in the container over
the lifetime is minimal. Given a set of w configurations and
corresponding stress matrices, the Minimum Stress Problem
is to compute the optimal active period of each diversified
configuration such that the stress on all CLBs is minimized.
This is a multi-objective optimization problem with the stress
on CLBs as the objective functions. To find the Pareto-optimal
solution, we focus on the most stressed CLB (i.e. we want
the first CLB failure to occur as late as possible) and thus
formulate the problem as a minimax problem:

Minimize maxi,j

∑w
k=1 xk · [AS

k]i,j
subject to 0 ≤ xk ≤ 1∑w

k=1 xk = 1
(13)

where xk is the percentage of the active period of configuration
Ak during the lifetime of the system.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 5

The Minimum Stress Problem can be converted to a linear
optimization problem by introducing a slack variable s:

Minimize s
subject to 0 ≤ xk ≤ 1∑w

k=1 xk = 1∑w
k=1 xk ·AS

k ≤ s · 1m×n

s ≥ 0,

(14)

where 1m×n is a m×n matrix, whose elements are all 1s.
The solution to this problem specifies the fraction of time
each configuration should be used. This time allocation can
be enforced by a scheduler which ensures that during a time
period t, configuration k is at most used for the period t · xk.

For the two sets of configurations shown in Eq. 8 and Eq. 9
(in the following called Config. (8) and (9)), assume that all
used CLBs are equally stressed: AS

k = Ak. The solution
of the Minimum Stress Problem for both sets are the same:
x1 = x2 = x3 = 1/3, i.e. the three configurations are equally
weighted. However, the accumulated CLB stress values ΣS

(8)

for Config. (8) and ΣS
(9) for Config. (9) differ:

ΣS
(8) =

[
2/3 2/3 2/3
2/3 2/3 2/3
1/3 2/3 0

]
, ΣS

(9) =

[
2/3 2/3 2/3
2/3 1/3 2/3
2/3 1/3 1/3

]
(15)

Config. (8), which does not satisfy the max diversification
condition, leaves one CLB always unused and thus imposes
this stress on another CLB, which raises the failure proba-
bility of that CLB. Config. (9), which does satisfy the max
diversification condition, distributes the stress more uniformly
to all CLBs and hence reduces the failure probability of the
individual CLBs.

The Minimum Stress Problem can be extended to consider
multiple aging or stress mechanisms by combining the separate
stress matrices for each configuration and degradation mecha-
nism. The resulting multi-objective Minimum Stress Problem
allows to find Pareto-optimal schedules of the configurations
such that the maximum stress for all mechanisms is minimized
at the same time.

B. Application to HCI and NBTI Degradation

This section describes the application of the stress balancing
method to two different aging mechanisms: Hot Carrier Injec-
tion (HCI) and Negative Bias Temperature Instability (NBTI).
Depending on the considered aging mechanism, stress and
wearout have different causes. For HCI based degradation,
the switching process causes high energy carriers which pro-
gressively degrade the gate oxide [29]. For NBTI degradation,
stress in PMOS transistors is caused by a negative potential
at the gate, i.e. in the ON-state of the transistor [30].

While we perform stress balancing for HCI and NBTI as
explained below, the method can also be applied to other
degradation mechanisms, such as Positive Bias Temperature
Instability (PBTI), by extracting the appropriate stress data.

1) Hot Carrier Injection: Hot carrier injection (HCI) is
a transistor degradation mechanism which causes a shift of
the threshold voltage due to generation of interface traps
and charges in the oxide by high energy (hot) carriers [29].

Hot carriers emerge when a source-drain current flows. The
number of generated interface traps ∆N depends on the stress
time ts in a power-law relation: ∆N ∝ tns . The exponent n
is reported to range between 1.0 initially and 0.5 later during
the lifetime [31].

In CMOS technology, a shortcut current or charge/discharge
current along source-drain flows when a transistor switches
and there is a conducting path from VDD to ground. Thus,
the stress time ts is proportional to the switching activity Sw
of the transistor ts ∝ Sw. Since the shift of threshold voltage
Vth is proportional to the number of generated interface traps
∆N , ∆Vth ∝ Swn.

We extract the switching activity for the transistors in the
CLBs per configuration to estimate the stress duty cycle ts
per transistor. These values are averaged per CLB and inserted
into the stress matrix ASHCI

i for configuration i. Transistors
in CLBs that are not used in configuration i have no switching
activity and thus do not degrade w.r.t. HCI.

2) Negative Bias Temperature Instability: Bias temperature
instability degrades the transistor by generation of trapped
charges at the interface between the gate oxide and silicon
substrate, attributed to the dissociation of silicon-hydrogen
bonds and followed by hydrogen migration into the oxide [31].
As consequence, Vth increases.

For PMOS transistors the degradation is called negative bias
temperature instability (NBTI) and it is more severe compared
to NMOS transistors [29]. PMOS transistors are under stress
when the gate voltage VGS is negative and in contrast to HCI,
transistors are under stress during static state operation.

The increase of Vth depends on the duration of stress
ts. In literature, logarithmic, exponential, or power-law time
dependence have been published [29]. We follow the wide-
spread power-law relation: ∆Vth ∝ tns , with n ranging from
0.15 to 0.3.

For the computation of the stress matrix ASNBTI
i , we extract

signal probabilities for the CLBs used in configuration i and
derive the stress period for each PMOS transistor in the LUTs,
i.e. the fraction of time it has negative VGS (is in the ON-state).

NBTI recovery is a phenomenon that partially revokes the
stress induced degradation at the oxide when VGS is zero.
NBTI recovery for PMOS transistors can be used to reduce
the worst case degradation. CLBs that are not used in a
configuration can be set into a relaxing/recovering state as
proposed in [8, 32].

V. IMPLEMENTATION FLOW

This section explains the overall flow of the generation of
diversified configurations, tool integration and computation
of stress matrices using the Xilinx tool flow. The Xilinx
tools support the PROHIBIT placement constraint [33], which
prevents the place-and-route tool to use specific resources
such as CLBs or Block RAMs at specified locations1. In the
following we employ this constraint to implement diversified
configurations for CLBs.

1Currently the PROHIBIT constraint is not effective/supported for routing
resources.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 6

As shown in Figure 1, an initial configuration is generated
for the module by synthesis and place-and-route of the orig-
inal design file. From this configuration, the used CLBs are
extracted and stored in the matrix A1.

Module Diversification

PROHIBIT Constraints

Place & Route

Design files

Place & Route for each
Diversified Configuration

Configuration 1

Diversified Configs

CLB Usage Extraction

Stress Estimation

, ,...2 3 wA A A

1A

, ,...S S S
1 2 wA A A

Fig. 1. Generation of diversified configurations using the module diversifi-
cation design method

Using Algorithm 1, we compute diversified configuration
matrices Ak which specify the diversified CLB usage. They
are exported as PROHIBIT placement constraints and then
provided to the Xilinx place-and-route tools. An example
constraint file for a diversified configuration of module alu4
implemented in a 20×4 container is as follows:

INST "alu4_inst" AREA_GROUP = "pblock_alu4_inst";
AREA_GROUP "pblock_alu4_inst"
RANGE=SLICE_X48Y80:SLICE_X57Y99;

PIN "alu4_inst.i_0" LOC = SLICE_X56Y80;
PIN "alu4_inst.i_1" LOC = SLICE_X56Y80;

.

.

.
.
.
.

.

.

.
PIN "alu4_inst.o_0" LOC = SLICE_X57Y80;
PIN "alu4_inst.o_1" LOC = SLICE_X57Y80;

.

.

.
.
.
.

.

.

.
CONFIG PROHIBIT=SLICE_X56Y84;
CONFIG PROHIBIT=SLICE_X56Y85;

.

.

.
.
.
.

.

.

.
CONFIG PROHIBIT=SLICE_X53Y80;
CONFIG PROHIBIT=SLICE_X54Y80;

The result is the set of diversified configurations for which
finally the stress of transistors in CLBs is estimated to con-
struct the stress matrices AS

i .
Aging analysis of single transistors requires a CLB model

at gate level or transistor level. Out of several prospects
[8, 34, 35], we chose to model a CLB as LUTs composed of 2-
input multiplexers in CMOS, each consisting of 14 transistors.
SRAM in LUTs is less susceptible to aging [8] and not
explicitly considered here.

As shown in Figure 2, the switching activity and signal
probability values of a configuration are obtained from the
power analysis tool Xilinx XPower Analyzer which provides
both values at CLB granularity. The LUT-internal switching
activity and signal probability values for individual transistors
are then derived from the values at CLB granularity using the
LUT model. Based on these values we compute the average
over the stress of all transistors in the LUTs of a CLB. These
values are then used to construct the stress matrix.

Xilinx XPower analysis

Place & routed module
configurations
1 2, ,..., wA A A

CLB Transistor level
model construction

Switching
activity

Signal
probability

Stress matrices
, ,...,S S S
1 2 wA A A

Estimation of avg.
transistor stress in CLBs

Module input
activity

Fig. 2. Stress Estimation Flow

VI. EXPERIMENTAL EVALUATION

We applied the proposed module diversification design
method to a set of modules from MCNC benchmark suite [36]
and OpenCores (http://www.opencores.org/). The target plat-
form was a Xilinx Virtex-5 FPGA with reconfigurable contain-
ers that are 20 CLBs in height, or 80 CLBs for large modules
from OpenCores, as recommended by Xilinx to align to the
clock region boundary. The container width is varied from
3 up to 13 CLB columns to investigate different degrees of
redundancy.

A. Module Diversification

For each module/container-size combination, we generated
the minimal set of configurations using the proposed module
diversification design method (tool-flow overview in Sec-
tion V). Table I summarizes the container setup and reports
the minimal number of configurations and the timing costs of
diversified configurations for every module.

TABLE I
CONFIGURATIONS FOR DIFFERENT CONTAINER SIZES AND MAX.

FREQUENCY OF ORIGINAL (ORIG.) AND DIVERSIFIED (DIV.) MODULES

Module
Container CLB Re- Minimal Frequency

Width*[CLB] dundancy [%] #Config. Orig. Div.
Wmin Wmax Wmin Wmax Wmin Wmax [MHz] [MHz] ∆[%]

pdc 3 5 9.1 64.0 12 3 150.8 145.2 3.7
misex3 4 7 11.1 81.8 10 3 136.5 123.3 9.7
alu4 4 7 3.9 81.8 27 3 130.4 127.5 2.3
apex4 6 9 22.4 111.8 6 2 126.2 114.5 9.3
apex2 6 11 14.3 117.8 8 2 122.4 115.3 6.2
des perf 7 13 4.9 117.1 22 2 135.3 127.3 6.3
aes core 3 5 27.7 127.3 5 3 124.7 124.7 0.04

* Container height for large OpenCore modules des perf and aes core
is 80 CLBs. Container height for other modules is 20 CLBs.

Column 1 lists the implemented modules and column 2
shows the minimal (Wmin) and maximal (Wmax) used con-
tainer width. The 3rd column shows the degree of CLB redun-
dancy for different container sizes. For example, apex4 uses 98
CLBs in the 20×6 container (i.e. Wmin), which corresponds
to (20× 6− 98)/98 ≈ 22.4% redundancy. Column 4 lists the
minimum number of configurations tolerating all single CLB
faults in Wmin and Wmax. For larger containers with higher
redundancy, fewer configurations are required.

Since the module diversification design method applies
additional constraints to prohibit certain CLB placements, the

Paper 14.1 INTERNATIONAL TEST CONFERENCE 7

maximally achievable frequency of a module may be affected.
The last column in Table I reports the maximal frequency (over
all container widths) of the original unconstrained module
(Orig.) in comparison to the diversified modules (Div.). For the
diversified modules, the reported maximal frequency always
corresponds to the slowest configuration of the module. The
timing cost is under 9.7%, which is a promising result for
an approach that obtains aging mitigation and fault tolerance
at no additional area overhead. Note that the original module
implementation is one of the diversified configurations and
thus can be used when full performance is required. If the
system frequency is lower than the maximal frequency of the
diversified modules, there are no timing costs at all.

B. Reliability Analysis

In this section, we investigate the reliability improvement
of the proposed module diversification design method for
different degrees of CLB redundancy, CLB reliabilities, and
number of configurations.

Figure 3 shows the module reliability according to Eq. 11
of Section III-B of module apex4 for a CLB reliability
RCLB(t) = 0.999, i.e. the probability of any single CLB
to be operational throughout a given time period t is 0.999.
We assume Cf = 1.0. The figure displays the reliability
increase for different numbers of diversified configurations
(from the minimum number of configurations up to 20) and for
container sizes from 20×6 to 20×9 CLBs, which corresponds
to CLB redundancies from 22.4% to 111.8%. Without any
diversified configurations, the module reliability is very low
at approximately 0.91. Using diversified configurations, the
module reliability increases drastically due to higher single
and multi-fold CLB-fault tolerance from extra configurations.
For example, three configurations are sufficient to tolerate all
single-CLB faults for apex4 implemented in a 20×8 container.
In addition, 47% of double and 22% of triple CLB-faults can
be tolerated with these three configurations as well. An extra
set of 17 diversified configurations increases 2-CLB and 3-
CLB fault tolerability further to 88% and 57%, respectively.

5
10

15
20

0
20

40
60

80
100

0.992

0.994

0.996

0.998

1

Number of config.CLB redundancy [%]

M
o
d
u
le

 r
e
lia

b
ili

ty

0.994

0.995

0.996

0.997

0.998

0.999

Fig. 3. Module reliability of apex4 for different ratios of CLB redundancy
and number of configurations with CLB reliability 0.999

Larger container sizes imply higher redundancy which
reduces the probability RCLB(t)m·n that all CLBs in the
container are fault free (cf. Eq. 11). This may reduce the

overall module reliability as seen on the left in Figure 3.
With increasing number of configurations, the tolerance of f -
fold CLB-faults rises and very high module reliability can be
achieved.

Figure 4 shows the reliability of modules using module
diversification versus a single configuration without fault
tolerance measure for different CLB reliabilities, computed
according to Eq. 11. For all modules, the minimal set of di-
versified configurations implemented in the smallest containers
is evaluated. It is clear that with diversified configurations
the module reliability is substantially higher than without any
fault tolerance measures. The module reliability of des perf
and aes core ranges from 0.59 to 0.95, respectively 0.83 to
0.98, when module diversification is not applied. With module
diversification, the reliability increases from 0.895 to 0.999
and from 0.980 to 0.9998, respectively.

0.90

0.92

0.94

0.96

0.98

1.00

0.9990 0.9992 0.9994 0.9996 0.9998

M
o

d
u

le
 R

e
lia

b
ili

ty

CLB Reliability

pdc (ModDiv)

misex3 (ModDiv)

alu4 (ModDiv)

apex4 (ModDiv)

apex2 (ModDiv)

pdc (no ModDiv)

misex3 (no ModDiv)

alu4 (no ModDiv)

apex4 (no ModDiv)

apex2 (no ModDiv)

Fig. 4. Module reliability with and without module diversification for
different CLB reliabilities. (Reliabilities of des perf and aes core are not
shown in the figure for clarity, but discussed in the text).

The reliability improvement factor (RIF) is a metric to
estimate the effectiveness of fault tolerance schemes [37]. The
RIF is the ratio of the failure probability of the original system
and the failure probability of the fault tolerant system, i.e. the
system using diversified module configurations:

RIF =
1−RNo FT

1−RDiv
(16)

Figure 5 plots the RIF for the five investigated modules
and CLB reliabilities ranging from 0.9990 to 0.9999. With
the proposed module diversification design method, reliability
improvement factors of up to 330 are achieved.

3

6

12

24

48

96

192

384

0.9990 0.9992 0.9994 0.9996 0.9998Re
lia

bi
lit

y
Im

pr
ov

em
en

t
Fa

ct
or

 (
lo

g
sc

al
e)

CLB Reliability

pdc
misex3
alu4
apex4
apex2
des_perf
aes_core

Fig. 5. Reliability improvement factor for the modules when module
diversification is applied

Paper 14.1 INTERNATIONAL TEST CONFERENCE 8

C. Stress Balancing

For the generated diversified configurations, we compute
an optimal schedule according to the Minimum Stress Prob-
lem introduced in Section IV. We consider the stress for
the two aging mechanisms Hot Carrier Injection (HCI) and
Negative Bias Temperature Instability (NBTI). Details on the
computation of stress matrices for HCI and NBTI are given
in Sections IV-B and V. The following results compare the
stress for the initial configuration and the minimum number
of configurations required for single CLB-fault tolerance (cf.
Eq. 6).

Figure 6(a) shows the switching activity (HCI stress) in the
CLBs used in the initial configuration of module alu4 with red
values for higher and blue values for lower activity. Figure 6(b)
shows the switching activity for another configuration which is
max diversified w.r.t. (a). Although configuration (b) uses the
CLBs unused in (a), there is still significant overlap between
them. If both configurations are used in a simple alternating
schedule (as proposed by [8, 27]), stress is not well balanced
and the maximum stress is hardly reduced at all, as shown in
Figure 6(c).

0 7
CLBX

0 7
CLBX

0

1e7

2e7

3e7

4e7

5e7

6e7

7e7

0 7
CLBX

0

5

10

15

20

C
L
B

Y

0 7
CLBX

a) b) c) d) e)

0 7
CLBX

avg. toggle rate per transistor in used CLBs [Hz] high
stress

low
stress

Fig. 6. Switching activities of a), b) two max. diversified configurations, c)
an alternating schedule thereof, d) a balanced scheduled with min. number of
four configurations and e) eight configurations (alu4)

Figure 6(d) shows the stress imposed on CLBs using the
proposed module diversification with the minimal number of
configurations and optimal scheduling for stress balancing.
The stress maxima are clearly reduced. For eight configura-
tions in Figure 6(e), the maxima can be even further reduced2.

Table II summarizes the HCI and NBTI stress reduction of
the optimal scheduling w.r.t. the initial configuration A1. For
each module, the reduction of the maximum stress (worst case
CLB) and the average over all used CLBs are listed. Since the
stress reduction depends on the available CLB redundancy, we
investigate the cases with the minimal container width Wmin

and maximal container width Wmax.
The results clearly show that both maximum and average

stress are reduced for all modules. The comparison of mini-
mum and maximum container width Wmin,Wmax shows that

2The white CLBs in the upper left are unused due to timing optimization
of the vendor place-and-route tool.

the stress reduction increases with the amount of available
CLB redundancy in the container.

TABLE II
STRESS REDUCTION [%] BY PROPOSED BALANCED SCHEDULE WITH MIN.

NUMBER OF CONFIGURATIONS (EQ. 6)

Module
HCI stress reduction [%] NBTI stress reduction [%]

Max. Avg. Max. Avg.
Wmin Wmax Wmin Wmax Wmin Wmax Wmin Wmax

pdc 33.8 43.6 8.9 36.5 12.0 34.2 9.7 35.8
misex3 37.7 41.2 10.6 41.6 13.9 37.4 10.3 43.7
alu4 32.6 51.7 3.1 43.4 8.6 35.5 5.7 44.5
apex4 35.2 54.6 15.4 50.5 22.3 49.8 20.2 50.6
apex2 24.8 50.3 13.2 49.0 17.0 49.3 14.4 49.1
des perf 68.9 50.2 13.3 51.1 14.0 50.0 7.0 49.4
aes core 26.7 49.7 20.7 48.6 20.8 50.0 20.2 48.4

The average stress reduction is bound by the CLB redun-
dancy. The more CLBs are available to distribute the load
to, the higher the reduction. The maximum stress reduction
depends on the scheduling of the configurations.

The maximum (average) HCI stress reduction ranges up
to 68.9% (51.1%) using the minimum number of configura-
tions for single CLB-fault tolerance combined with the stress
balancing schedule. For maximum (average) NBTI stress,
the reduction reaches up to 50.0% (50.6%). For the module
des perf, the large HCI stress reduction is achieved even for
small containers, i.e. low CLB redundancy. In this circuit,
there is one CLB with significantly higher HCI stress than
all other CLBs and by balanced scheduling this high stress is
well distributed to other CLBs.

Figure 7 shows the relation between ∆Vth degradation due
to HCI and operation time. According to Section IV-B, we
assume that stress is uniformly distributed over the lifetime
and the exponent n is 0.5. When ∆Vth reaches a critical
value ∆V crit

th , the device fails. The period of time is marked as
mean time to failure MTTFno ModDiv in the graph. If module
diversification and stress balancing is applied, the mean time
to failure increases. Reducing the stress by 68.9% increases
time to failure by 222%. This point is labeled by MTTFModDiv
in the graph.

0

∆Vth
crit

MTTFno_ModDiv MTTFModDiv

∆
V

th

Aging without ModDiv
Aging with ModDiv

0 t

Lifetime increase

Fig. 7. Relation between ∆Vth and operation time for HCI degradation

The consideration of NBTI time to failure is similar to HCI
since it can also be modeled by a power-law relation. Cutting
the stress in half by module diversification combined with
optimal stress balancing doubles the time to failure.

If more configurations than the minimum number required
for single CLB-fault tolerance are used, the stress can be
reduced even more.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 9

VII. CONCLUSIONS

The reliability of nano-CMOS circuits is threatened by
different aging mechanisms. We proposed a novel mod-
ule diversification design method for runtime reconfigurable
FPGA-based systems to ensure single and multiple CLB-
fault tolerance as well as aging mitigation. We developed an
algorithm which generates the minimal number of diversified
configurations required to tolerate at least any single CLB-
fault in a reconfigurable container and which can generate
additional configurations for multi-fold CLB-fault tolerance.
We computed an optimal schedule of diversified configurations
for aging mitigation by stress balancing.

Experimental results show the large improvement of system
reliability due to fault tolerance and the stress reduction on
CLBs due to optimal scheduling. Reliability improvement
factors between 4 and 330 are achieved. Module diversification
and optimal stress balancing allow to reduce the maximal HCI
(NBTI) stress by up to 68.9% (50.0%) resulting in an increase
in expected lifetime by up to 222% (100%).

ACKNOWLEDGMENTS

This work is supported in parts by the German Research
Foundation (DFG) as part of the priority program “Dependable
Embedded Systems” (SPP 1500 – http://spp1500.itec.kit.edu).

REFERENCES

[1] Convey Computer Corp., “Homepage of Convey Computer”, http://
www.conveycomputer.com/, accessed at Feb. 11, 2013.

[2] A. Alsolaim, J. Becker, M. Glesner, and J. Starzyk, “Architecture
and application of a dynamically reconfigurable hardware array for
future mobile communication systems”, in IEEE Symposium on Field-
Programmable Custom Computing Machines, 2000, pp. 205–214.

[3] T. T.-O. Kwok and Y.-K. Kwok, “On the design of a self-reconfigurable
SoPC cryptographic engine”, in 24th International Conference on Dis-
tributed Computing Systems - Workshops, 2004, pp. 876–881.

[4] W. MacLean, “An evaluation of the suitability of FPGAs for embedded
vision systems”, in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition - Workshops, 2005.

[5] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu, “An Overview
of Reconfigurable Hardware in Embedded Systems”, EURASIP Journal
on Embedded Systems, pp. 1–19, 2006.

[6] J. McPherson, “Reliability Challenges for 45nm and Beyond”, in
ACM/IEEE Design Automation Conference, 2006, pp. 176–181.

[7] E. A. Stott, J. S. Wong, P. Sedcole, and P. Y. Cheung, “Degradation in
FPGAs: Measurement and Modelling”, in ACM/SIGDA Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), 2010, pp. 229–238.

[8] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan,
M. Irwin, and K. Sarpatwari, “Toward increasing FPGA lifetime”, IEEE
Trans. on Dep. and Secure Computing, vol. 5, no. 2, pp. 115–127, 2008.

[9] C. Stroud, E. Lee, and M. Abramovici, “BIST-based diagnostics of
FPGA logic blocks”, in IEEE Int’l Test Conference (ITC), 1997, pp.
539–547.

[10] M. S. Abdelfattah, L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte,
H. Zhang, J. Henkel, and H.-J. Wunderlich, “Transparent structural
online test for reconfigurable systems”, in IEEE International On-Line
Testing Symposium (IOLTS), June 2012, pp. 37–42.

[11] M. Dales, “Managing a reconfigurable processor in a general purpose
workstation environment”, in Design, Automation and Test in Europe
(DATE), 2003, pp. 980–985.

[12] L. Bauer, M. Shafique, and J. Henkel, “A computation- and
communication- infrastructure for modular special instructions in a
dynamically reconfigurable processor”, in International Conference on
Field Programmable Logic and Applications (FPL), 2008, pp. 203–208.

[13] M. Renovell, J. Portal, J. Figueras, and Y. Zorian, “Test pattern and
test configuration generation methodology for the logic of RAM-based
FPGA”, in Asian Test Symposium, 1997, pp. 254–259.

[14] M. Tahoori, “Application-Dependent Testing of FPGAs”, IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 9,
pp. 1024–1033, 2006.

[15] W. K. Huang, F. J. Meyer, X.-T. Chen, and F. Lombardi, “Testing
configurable LUT-based FPGA’s”, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 6, pp. 276–283, 1998.

[16] V. Verma, S. Dutt, and V. Suthar, “Efficient On-line Testing of FPGAs
with Provable Diagnosabilities”, in ACM/IEEE Design Automation Con-
ference (DAC), 2004, pp. 498–503.

[17] D. Milton, S. Dhingra, and C. E. Stroud, “Embedded processor based
built-in self-test and diagnosis of logic and memory resources in
FPGAs”, in International Conference on Embedded Systems and Ap-
plications (ESA), 2006, pp. 87–93.

[18] M. Abramovici, C. Strond, C. Hamilton, S. Wijesuriya, and V. Verma,
“Using roving STARs for on-line testing and diagnosis of FPGAs in
fault-tolerant applications”, in IEEE International Test Conference (ITC),
1999, pp. 973–982.

[19] J. Emmert, C. Stroud, and M. Abramovici, “Online Fault Tolerance for
FPGA Logic Blocks”, IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 15, no. 2, pp. 216–226, 2007.

[20] L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, E. Schneider, H. Zhang,
J. Henkel, and H.-J. Wunderlich, “Test strategies for reliable runtime
reconfigurable architectures”, IEEE Transactions on Computers, 2013,
doi: 10.1109/TC.2013.53, ISSN: 0018-9340.

[21] T. Inoue, S. Miyazaki, and H. Fujiwara, “Universal fault diagnosis for
lookup table FPGAs”, IEEE Design & Test of Computers, vol. 15, no. 1,
pp. 39–44, 1998.

[22] M. Abramovici, C. Stroud, and J. Emmert, “Online BIST and BIST-
based diagnosis of FPGA logic blocks”, IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 12, no. 12, pp. 1284–1294, 2004.

[23] J. Lach, W. Mangione-Smith, and M. Potkonjak, “Low overhead fault-
tolerant FPGA systems”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 6, no. 2, pp. 212–221, 1998.

[24] A. Kanamaru, H. Kawai, Y. Yamaguchi, and M. Yasunaga, “Tile-based
fault tolerant approach using partial reconfiguration”, in International
Workshop on Reconfigurable Computing (ARC), 2009, pp. 293–299.

[25] W.-J. Huang and E. J. McCluskey, “Column-based precompiled
configuration techniques for FPGA”, in IEEE Symp. Field-Prog.
Custom Computing Machines (FCCM), 2001, pp. 137–146.

[26] S. Mitra, W.-J. Huang, N. Saxena, S.-Y. Yu, and E. McCluskey, “Re-
configurable architecture for autonomous self-repair”, IEEE Design &
Test of Computers, vol. 21, no. 3, pp. 228–240, 2004.

[27] E. Stott and P. Cheung, “Improving FPGA Reliability with Wear-
Levelling”, in International Conference on Field Programmable Logic
and Applications (FPL), 2011, pp. 323–328.

[28] M. Psarakis and A. Apostolakis, “Fault tolerant FPGA processor based
on runtime reconfigurable modules”, in 17th IEEE European Test
Symposium (ETS), 2012, pp. 1–6.

[29] J. B. Bernstein, M. Gurfinkel, X. Li, J. Walters, Y. Shapira, and
M. Talmor, “Electronic circuit reliability modeling”, Microelectronics
Reliability, vol. 46, no. 12, pp. 1957–1979, 2006.

[30] D. K. Schroder, “Negative bias temperature instability: What do we
understand?” Microelectronics Reliability, vol. 47, no. 6, pp. 841–852,
2007.

[31] X. Li, J. Qin, and J. Bernstein, “Compact modeling of MOSFET wearout
mechanisms for circuit-reliability simulation”, IEEE Transactions on
Device and Materials Reliability, vol. 8, no. 1, pp. 98–121, 2008.

[32] F. Firouzi, S. Kiamehr, and M. B. Tahoori, “A linear programming
approach for minimum NBTI vector selection”, in Great Lakes
Symposium on VLSI (GLVSI), 2011, pp. 253–258.

[33] Xilinx, Constraints Guide (UG625, v. 13.4), 2012.
[34] S. Kiamehr, A. Amouri, and M. B. Tahoori, “Investigation of NBTI

and PBTI Induced Aging in Different LUT Implementations”, in Int’l
Conference on Field-Programmable Technology (FPT), 2011, pp. 1–8.

[35] E. Stott, P. Sedcole, and P. Cheung, “Modelling degradation in FPGA
lookup tables”, in International Conference on Field-Programmable
Technology (FPT), 2009, pp. 443–446.

[36] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0”, 1991.

[37] P. K. Lala, Self-Checking and Fault-Tolerant Digital Design. Morgan
Kaufmann, 2000.

Paper 14.1 INTERNATIONAL TEST CONFERENCE 10

