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Abstract—Although CMOS technology scaling offers many 
advantages, it suffers from robustness problem caused by 
hard, soft and timing errors. The robustness of future CMOS 
technology nodes must be improved and the use of fault 
tolerant architectures is probably the most viable solution. In 
this context, Duplication/Comparison scheme is widely used for 
error detection. Traditionally, this scheme uses a static 
comparator structure that detects hard error. However, it is 
not effective for soft and timing errors detection due to the 
possible masking of glitches by the comparator itself. To solve 
this problem, we propose a pseudo-dynamic comparator 
architecture that combines a dynamic CMOS transition 
detector and a static comparator. Experimental results show 
that the proposed comparator detects not only hard errors but 
also small glitches related to soft and timing errors. Moreover, 
its dynamic characteristics allow reducing the power 
consumption while keeping an equivalent silicon area 
compared to a static comparator. This study is the first step 
towards a full fault tolerant approach targeting robustness 
improvement of CMOS logic circuits. 
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I.  INTRODUCTION 
Digital systems transitioned from specialized application 

areas to ubiquitous mass products. The robustness of 
electronic systems is one of the upcoming key requirements 
in many of these application areas, including safety critical 
applications and mass products [1]. While scaling supports 
the need for competitive mass products it also influences 
other functional and non-functional properties such as 
reliability, safety and robustness. Achieving and maintaining 
those properties is getting more critical with every 
introduced technology nodes as treating them on the physical 
level by adjusting process parameters during manufacturing 
is no longer feasible. Additional challenges are posed by 
feature sizes entering an area where simple inverters get 
susceptible to soft errors and single event effects. 

Fault tolerant architectures are essential to reach the 
required robustness goals of future CMOS circuits and 
systems. These architectures are commonly used to tolerate 
on-line faults, i.e. faults that appear during normal system 
operations, irrespective of their transient of permanent nature  
[2]. However, it has been shown in [3, 4, 5] that these 
architectures could also tolerate permanent defects and 
hence, improve the manufacturing yield. 

Fault tolerant techniques often rely on one of two basic 
concepts: Error Masking or Detection/Correction. While the 
first method masks possible error without giving any 
information about their occurrence, the second one employs 
a comparator to validate a circuit response by matching the 
outputs of redundant circuit copies 
(Duplication/Comparison) or to prove the absence of errors 
by validating a checksum against a golden reference [6,7]. 

The main idea of Duplication/Comparison consists of 
duplicating the logic circuit and adding a comparator to the 
circuit outputs. If an error affects one of the logic circuits, the 
comparator might indicate this problem depending on the 
error type. A hard error in one of the two circuits is always 
detected. Soft errors are often not detected due to two main 
reasons: 1) Glitches caused by soft and timing errors may be 
masked within the comparator, and 2) the observability of 
soft and timing errors is timing dependent, due to their 
transient nature. 

Self-checking comparators and two-rail checkers are well 
known for their capability to detect faults present at inputs 
and internal nodes [16, 17, 18]. However, most of them 
target Stuck-at-fault only. In [16], authors claimed the 
detection of soft errors at comparator inputs, but only for 
large glitches that will not be filtered by logic gates.  

Consequently, the comparator structure should integrate 
the ability to detect any transitions caused by soft and timing 
errors. A first approach utilizing a dedicated transition 
detector to capture these errors at the registers has been 
previous discussed in RAZOR II [8]. The approach can also 
be extended to detect errors at logic circuits by adding the 
transition detector to each circuit output, thereby introducing 
a high hardware overhead. In [9], the authors proposed to 
combine a one-bit parity compaction with a transition 
detector on its output. This solution is less costly in term of 
area overhead but only offers the detection of soft errors. 
Moreover, the problem of masked glitches at the compactor 
remains untreated. 

The main idea of this work is to combine a dynamic 
transition detector and a static comparator in order to detect 
all aforementioned errors (hard, soft and timing) during a 
user-defined detection window. The static part of the 
comparator architecture attains the detection of hard errors 
while the dynamic part obtains the detection of soft and 
timing errors. Moreover, this “pseudo-dynamic” comparator 
consumes less power in comparison to a static comparator 
with an equivalent silicon area. Finally, compared to the “full 
dynamic” comparator proposed in [14], our architecture does 



not suffer from logic level problem caused by PMOS 
transistors implemented in the pull-down network [15]. 

The presented pseudo-dynamic comparator incorporates 
the following properties: 

• Dynamic behavior: It is able to detect and flag 
glitches during a comparison window, making it 
applicable for the detection of timing and soft errors. 

• Increased sensitivity: Compared to a static 
comparator smaller glitches are detected. 

• Area: The overhead is comparable to a static 
comparator. 

• Power: The power consumption is reduced as 
nonessential transitions outside the comparison 
window are filtered. 

The remainder of this paper is organized as follows. 
Section II provides the fundamentals of the 
Duplication/Comparison scheme. Section III presents the 
pseudo-dynamic comparator architecture that embeds the 
transition detection. Experimental results in terms of 
detection capabilities, area overhead and power consumption 
are discussed in Section IV. 

II. FUNDAMENTALS OF DUPLICATION/COMPARISON  
Duplication/Comparison is an error detection method 

widely used in fault tolerant architectures. It consists in 
duplicating the Logic Circuit (LC). The two LCs can be 
identical or different but realizing the same logic functions. 
The same input vector, Input feeds both LCs. Their output 
vectors, A and B are compared to determine the presence of 
any errors. In a complete fault tolerant architecture, the 
comparison signal Comp is used to activate the error 
correction flow. Figure 1 illustrates the basic scheme of the 
Duplication/Comparison scheme. 

The comparator performs two stages: local comparison 
and global comparison. The local comparison verifies each 
LC’s output pairs by using XOR functions. The global 
comparison provides an accumulation of all local 
comparisons with the help of an OR/AND tree. This stage is 
necessary when a global comparison result is required by 
next stages, such as in Detection/Correction scheme where a 
single output of the Detection stage triggers the correction 
mechanism at errors occurrences. 

 
Figure 1.  Duplication/Comparison principle. 

The difference comparator (d_comparator, Figure 2) is 
mostly used in a fault tolerance context to verify that the two 
output vectors are different. The first logic level consists of 
XOR gates implementing the local comparison while the 
accumulation into a single bit signal is achieved by an OR-
tree. 

The stability of the comparator output Comp depends on 
many parameters. Since the two LCs are not physically 
equivalent (process variations), Comp is not stable during the 
LC computation time (max propagation delay tLC of LCs). In 

addition, the comparator itself has a propagation delay tCOMP 
during which glitches may occur. Consequently, Comp starts 
at a stable state, result of the previous comparison, to reach 
another stable state, result of the new comparison. In 
between, Comp is unstable. The use of the Comp signal must 
be strictly restricted to its stable state. Consequently, Comp 
must be used only during a stable period called “comparison 
window”, after tLC + tCOMP and before the next computation. 

  
Figure 2.  Static d_comparator structure. 

In a fault-free context, Comp is constantly at logic-0 
during the comparison window. If a hard error occurs, the 
problem is detectable since Comp will change to a logic-1. 
For soft and timing errors, the detection may be effective 
since glitches are observable at Comp signal during the 
comparison window. However, small glitches can be masked 
by the comparator itself, which makes the detection 
impossible. Fault-free and faulty (hard, soft and timing 
errors) cases are highlighted in Figure 3. Consequently, the 
comparator structure must be modified in order to detect any 
transitions caused by soft and timing errors. 

  
Figure 3.  Comparison signal waveforms. 

III. THE PSEUDO-DYNAMIC COMPARATOR ARCHITECTURE 
The objective of this work is to replace the static 

comparator in the Duplication/Comparison paradigm in 
order to detect any transition happening within the 
comparison window. 

The presented pseudo-dynamic comparator checks the 
two input vectors during a user-defined time window. In the 
fault free case and in presence of hard errors both input 
vectors are stable throughout the comparison window. In 
these cases the pseudo-dynamic comparator provides the 
same function as a static comparator: It returns a logic-0 if 
two input vectors are equal and a logic-1 otherwise. In 



presence of timing or soft errors the behavior of the pseudo-
dynamic comparator differs. While the static comparator 
propagates transitions and glitches from its inputs to its 
output, the pseudo-dynamic comparator will generate exactly 
one transition from logic-0 to logic-1 indicating that a 
difference occurred. The output stays stable at logic-1 until 
the pseudo-dynamic comparator is reset at the end of the 
comparison window. In addition, the pseudo-dynamic 
comparator filters all transitions happening before or after 
the comparison window, thereby masking all transitions 
happening during tLC. 

Different possibilities exist in order to implement a 
pseudo-dynamic comparator with the aforementioned 
characteristics: 

• A dynamic transition detector, as described in [8], 
could be added to the output of a traditional static 
comparator. While improving the soft error tolerance 
capability drawbacks are expected with respect to the 
other properties. As the detector is added at the end of 
the accumulation phase glitches are still masked 
within the previous logic levels. In addition all 
transitions, whether within the comparison window or 
not, propagate throughout the complete structure and 
lead to a power consumption comparable to a static 
comparator.  

• Adding transition detectors at LC outputs eliminates 
the masking of glitches within the comparator but 
results in an increased area overhead. 

The pseudo-dynamic comparator presented here 
implements the dynamic behavior by combining the 
transition detection and the accumulation stage within the 
comparator. The first logic level of the accumulation stage is 
replaced by dynamic CMOS logic resulting in all of the 
above-mentioned properties. 

Section III.A presents a dynamic OR (DOR) gate 
combining the static OR function needed in the accumulation 
stage with the ability to detect and flag transitions. Section 
III.B depicts the complete architecture of the pseudo-
dynamic comparator and explains its advantages over a 
traditional static comparator. 

A. Dynamic OR gate architecture 
Figure 4 shows the schematic of a dynamic OR gate with 

4 logic inputs. It consists of 9 transistors and is controlled by 
a detection clock signal DC and a reset signal. 

When the reset signal is at logic-0, node N is pre-charged 
to VDD and thus node Z is kept at logic-0. During the 
evaluation phase, both reset signal and digital clock (DC) 
signal are at logic-1. T1 is off while T2 and T3 are on. 
During this phase, if all signals C1, C2, C3 and C4 are at 
logic-0 then T4, T5, T6 and T7 are all off. Thus, no 
discharge current path exists and node N is kept at logic-1 
while node Z is at logic-0. If at least one of the four logic 
inputs, C1 for example, turns to logic-1 during the evaluation 
phase, a current path will be formed and node N will be 
pulled down which makes node Z to switch to logic-1. Note 
that, once node N is discharged, it will remain at logic-0 until 
the next time we reset the DOR gate with the reset signal. 

 
Figure 4.  4-input DOR gate (DOR4) 

During the evaluation phase, dynamic CMOS logic 
suffers from leakage currents. Even if the pull-down network 
is off, these currents will discharge node N, which causes a 
false value at output Z. Therefore, we need a “keeper” to 
maintain N at logic-1 when the pull-down network is off. 
Moreover, this keeper must be weak enough so that when the 
NMOS logic is on, it can pull-down node N to logic-0. In [8], 
the authors proposed a “weak keeper” which is formed by a 
two inverters loop as shown in Figure 5a. However, in order 
to reduce the area overhead of the DOR, we decided to use a 
feedback transistor as presented in [10]. This structure is 
depicted in Figure 5b. 

 a)     b) 

Figure 5.  Keeper structures 

B. Dynamic comparator architecture 
Figure 6 shows a complete architecture of our pseudo-

dynamic comparator. Similarly to a traditional static 
comparator as shown in Figure 2, the pseudo-dynamic 
comparator is composed of two stages: comparison and 
accumulation.  The comparison stage consists of static 2-
input XOR gates while the accumulation stage is modified 
from the one of the static comparator. Static OR gates, in the 
first layer of the static OR-tree, are replaced by DOR gates. 
The rest of the static OR-tree is left intact. Compared to the 
static comparator, the pseudo dynamic comparator has two 
more inputs, which control reset and DC inputs of the DOR 
gates. 

As mentioned in previous sub-section, the output of the 
DOR gate is stable at logic-0 due to the keeper till the 
evaluation phase, which is controlled by the DC signal. 
Thus, Comp is constant logic-0. During the evaluation phase, 
if the two vectors A and B are stable and identical (fault-free 
case) then all signals Ci (i = 1..n) are also at logic-0 which 
maintain DOR outputs unchanged. Therefore, Comp will be 
constant logic-0, which means there is no error. 



 
Figure 6.  Pseudo dynamic comparator architecture. 

Otherwise, if the two vectors A and B are not identical, 
there will be a constant logic-1 (presence of hard error) or 
glitches (presence of soft or timing error) at one of the Ci 
signals. At least one of the DOR outputs will then turn to 
logic-1, which makes Comp signal switch to logic-1 until the 
next reset signal is applied. 

The structure of the pseudo-dynamic architecture is 
presented in Figure 6. Accumulation stage is active only 
during the comparison window. Moreover, in fault free 
conditions, which happen most of the time, DOR’s gate 
outputs are at constant logic-0, which means that the Layer 2 
of the Accumulation phase does not consume dynamic 
power.  Therefore, beside the detection capability of soft and 
timing errors, the pseudo-dynamic comparator also provides 
power consumption reduction.  

Finally, the advantage of having a comparison window is 
that the comparison signal Comp is at stable logic-0. Only in 
case of error, it will switch to logic-1 and remain at this level 
until the reset signal is applied. These characteristics make 
the interpretation of this signal easier when used in a 
complete Detection/Correction fault tolerant scheme. 

IV. EXPERIMENTAL RESULTS 
In order to evaluate our pseudo-dynamic comparator, we 

implemented it using the Nangate Open Cell Library (OCL, 
[11]), which contains standard cells for a 45nm technology 
specified by the Predictive Technology Model (PTM, [12]). 
In the following sub-sections we present several SPICE 
simulations to highlight the added functionality to the 
pseudo-dynamic comparator in contrast to the traditional 
static one. In order to prove the architecture concept, only 
typical conditions are taken into account at this first step of 
the work. Process variations will be studied in further papers. 
Then, the layout implementation is discussed. 

A. Sensitivity 
1) Glitches detection capability of DOR gate 

In this sub-section, we verify the detection capability of 
the DOR gates with respect to input glitches during the 

evaluation phase. The DOR used in our simulations is 
represented in SPICE as the schematic shown in Figure 4 
along with the “keeper” shown in Figure 5b.  

In our simulations, the DOR is reset (logic-0 on reset 
input) at t0=50ps and t4=400ps while the evaluation phase 
(logic-1 on DC input) is set between t1=100ps and t3=350ps. 
The evaluation window is around 250ps. As the four inputs 
C1, C2, C3 and C4 of the DOR are symmetric, we only 
apply glitches at C1 while C2, C3 and C4 are kept at logic-0. 
The glitches are applied at t2=200ps (during the evaluation 
window). We simulate the output Z of the DOR gate in two 
cases based on the duration of the glitch (high level) as: 1) 
∆1=40ps for a large and 2) ∆2=15ps for a small glitch. Both 
glitches have the rising and falling time of about 1ps. 
Simulation results are shown in Figure 7. 

In Figure 7, waveforms of inputs, reset and DC are 
shown respectively as signals V(reset) and V(dc). Plot V(c1) 
presents the glitch at input C1. Output Z of the DOR gate is 
shown as V(z).  We can observe that during the evaluation 
phase, when C1 is at logic-0 between t1 and t2, Z is also at 
logic-0. When a large glitch appears at t2, Z turns to logic-1 
level, which means that the glitch was detected. Note that Z 
remains at logic-1 even when the large glitch has 
disappeared at time t3. It only returns to low level when the 
DOR is reset at t4. 

In the second case shown in Figure 7, as the glitch is too 
small the output Z did not have time to completely turn to 
logic-1. When the small glitch disappears, Z returns to logic-
0 because of the “keeper”. In this simulation, the small glitch 
was not detected. These results clearly demonstrate that we 
cannot detect glitches of size smaller than the commutation 
time of the dynamic gate. 

 
Figure 7.   Glitches detection capability of DOR gate. 

2) Static versus Pseudo-dynamic comparator 
In this sub-section, we compare the glitches detection 

capability between a static comparator and a pseudo-
dynamic comparator able to compare two 4-bit input vectors. 
The static comparator is implanted in SPICE using four 2-
input XOR gates in the comparison stage and a 4-input OR 
gate in the accumulation stage. In the pseudo-dynamic 



comparator, we replace the 4-input OR gate with the 4-inputs 
DOR gate presented in the last sub-section. 

In the simulations, the pseudo-dynamic comparator is 
reset (logic-0 of reset input) at t0=50ps and t4=400ps while 
its comparison phase (logic-1 of DC input) is set between 
t1=100ps and t3=350ps. Both comparators are used to 
compare two input vectors A[3:0] and B[3:0]. Two input 
pairs (A3, B3) and (A2, B2) are kept at logic-0 while the pair 
(A0, B0) is kept at logic-1. 

Figure 8 shows simulation results when we keep (A1, B1) 
at logic-0 and apply a glitch at A1 at time t2=200ps during 
∆=70ps. Glitch rising and falling time is about 1ps. 
Waveforms of the inputs reset and DC of the pseudo-
dynamic comparator are shown respectively as V(reset) and 
V(dc). Plot V(a1) and V(b1) presents the input signals 
applied at input pair (A1, B1) of both comparators. The 
output Comp of the static comparator and the one of the 
dynamic comparator are respectively shown in V(comp_s) 
and V(comp_pd). 

 
Figure 8.  Static vs. Pseudo-dynamic comparator 

Waveforms in Figure 8 show that the pseudo-dynamic 
comparator was able to detect the glitch of ∆=70ps while the 
static comparator filtered it.  By making the glitch wider, we 
found that the pseudo-dynamic comparator could detect 
glitches of 64ps while the static comparator could only detect 
86ps or larger glitches. Moreover, due to their un-symmetric 
internal structure, both comparators have glitch detection 
capability that depends on the glitch form. Simulations with 
B1 and A1 kept at logic-1 and glitch switching from logic-1 
to logic-0 added to A1, reveal that the pseudo-dynamic 
comparator could detect glitches of 57ps wide. In the same 
conditions, the static comparator could only detect glitches 
larger than 80ps. 

In Figure 8, we can also see that the comparison signal of 
the pseudo-dynamic comparator starts switching to logic-1 at 
t=300ps while the glitch appeared at t2=200ps. In fact, this 
high delay is due to the additional delay added by the XOR 
gates of the comparator. Moreover, small glitches are also 
filtered out by these gates. In order to reduce the delay as 
well as to improve the sensitivity of DORs gates, we can 
make the Comparison stage (Figure 6) dynamic instead of 

the Accumulation stage. This can be done by using pseudo-
dynamic XOR gates. 

B. Area Overhead 
In order to evaluate the feasibility of the proposed 

scheme, the 4-input dynamic OR (DOR4) was designed as a 
standard cell using a full custom design style. The Open Cell 
Library (OCL) is now used to compare the area of the DOR4 
standard cell and a static 4-input OR. It contains standard 
cells for a 45nm technology specified by the Predictive 
Technology Model. The 4-input OR gate OR4 X1 of the 
OCL has a cell height of 1.4μm and a cell width of 1.14µm. 
Its area of 1.596µm2 is used as the baseline in the following. 

Figure 9 shows the layout of the dynamic OR standard 
cell. The transistors from Figure 4 are placed as follows: The 
small N-well in the upper left corner contains the pull-up 
transistor of the inverter, T1 as well as the feedback 
transistor T8. The Pwell at the bottom holds the pull-down 
transistor of the inverter together with the transistors T2 and 
T3. The right hand side implements the NMOS transistors 
T4-T7 used for the inputs. 

The DOR4 standard cell was designed according to the 
design rules and electrical rules of the FreePDK process 
design kit [13]. The cell height is as in the OCL 1.4µm. 
Together with a width of 1.14µm the overall area results in 
1.596µm2. The overhead to implement the proposed 
comparator at gate level consists of the DOR4 and the 
detection clock generator (DC). While the detection clock 
generation can be shared among all dynamic OR gates and 
synthesized using standard clock tree synthesis algorithms 
and tools more attention has to be paid for then dynamic part 
(Layer 1) of the comparator architecture. Compared to the 
OCL OR4 X1 the dynamic part of the comparator can be 
implemented without any area penalty while the static part of 
the comparator remains unchanged and is implemented using 
OCL standard cell ORs. The area of the detection clock 
generator is compared to the comparator considerable small. 

 
Figure 9.  Layout of 4-input dynamic OR gate. 

C. Power consumption 
To determine and compare the power consumption of the 

comparators a case study for b05 from the ITC’99 
benchmarks was carried out. According to Figure 1 two 
combinational copies of b05 were synthesized for the OCL. 
To account for a realistic timing variation at the comparators 
input signals LC1 was restricted to the use of primitive two 
input gates while LC2 used complex gates with more inputs. 



This base circuit b is used as a baseline in the following. The 
base circuit is extended with a static comparator, the 
resulting circuit is called static (s). Attaching the proposed 
pseudo-dynamic comparator to LC1 and LC2 results in the 
dynamic (d) circuit. 

All three circuits are then fed by a test bench applying a 
fully specified test set with 120 patterns in total, using 200ns 
per pattern. For the dynamic circuit the reset signal was 
pulled to logic-0 at 1ns for a duration of 1ns, the comparison 
window lasted from 5ns to 195ns. For all three circuits b, s 
and d, the following steps were performed: 

• Compile circuit b, s, d to verilog, annotate gate delays. 
• Read circuit and delay annotations into simulator. 
• Simulate circuit and test bench, record switching 

activity. 
• Perform cycle accurate timing analysis taking into 

account the circuit, delay annotations and switching 
activity. 

TABLE I.  AVERAGE POWER CONSUMPTION 

Circuit Average power (W) 
base 1.163x10-05 

static 1.281x10-05 
dynamic 1.247x10-05 

 
Table I shows the calculated average power for all three 

circuits. The power consumption of the static comparator is: 
P(static) = P(s) − P(b) = 1.18x10−06 W. The average power 
for the presented pseudo-dynamic comparator is significantly 
lower: P(dynamic) = P(d) − P(b) = 0.84x10−06 W . 
Compared to the static comparator its power consumption 
amounts to only 71.186% (= P(dynamic)/P(static)). The 
reduction is achieved by strictly examining only transitions 
within the comparison window and ensuring that all 
differences are immediately stored due to the dynamic 
behavior. Moreover, in a fault free case, outputs of all DOR 
gates are stable at logic-0 which means that the OR-tree 
(Layer 2 of the Accumulation stage) does not consume 
dynamic power. 

V. CONCLUSION 
A new pseudo-dynamic comparator architecture has been 

presented that targets the error detection in a 
Duplication/Comparison context.  This architecture 
combines a traditional comparator using static CMOS gates 
with a dynamic CMOS transition detector. While behaving 
like a static comparator in presence of hard errors the 
dynamic behavior enables the identification of timing and 
soft errors. 

The performed analog simulations prove an increased 
sensitivity to glitches during a user-defined comparison 
window, thereby significantly reducing the internal 
switching activity while focusing the improved detection 
capabilities to the relevant period in time. Implementing the 
dynamic OR (DOR) as a new standard cell in a 45nm 
technology verifies the usability of the pseudo-dynamic 
comparator without area penalties. The preformed power 

simulations show a power reduction by nearly 30% 
compared a static comparator. In addition the presented 
comparator perfectly supports any fault tolerance scheme by 
eliminating the necessity to explicitly latch the comparator 
output. 
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