
978-1-4673-1074-1/12/$31.00 ©2012 IEEE

A Pseudo-Dynamic Comparator
for Error Detection in Fault Tolerant Architectures

D. A. Tran, A. Virazel, A. Bosio, L. Dilillo,
P. Girard, A. Todri

LIRMM – University of Montpellier / CNRS
Montpellier, France

{tran, virazel, bosio, dilillo, girard, todri}@lirmm.fr

M. E. Imhof, H.-J. Wunderlich
Institute of Computer Architecture and Computer Engineering

University of Stuttgart, Germany
{imhof, wu}@iti.uni-stuttgart.de

Abstract—Although CMOS technology scaling offers many
advantages, it suffers from robustness problem caused by
hard, soft and timing errors. The robustness of future CMOS
technology nodes must be improved and the use of fault
tolerant architectures is probably the most viable solution. In
this context, Duplication/Comparison scheme is widely used for
error detection. Traditionally, this scheme uses a static
comparator structure that detects hard error. However, it is
not effective for soft and timing errors detection due to the
possible masking of glitches by the comparator itself. To solve
this problem, we propose a pseudo-dynamic comparator
architecture that combines a dynamic CMOS transition
detector and a static comparator. Experimental results show
that the proposed comparator detects not only hard errors but
also small glitches related to soft and timing errors. Moreover,
its dynamic characteristics allow reducing the power
consumption while keeping an equivalent silicon area
compared to a static comparator. This study is the first step
towards a full fault tolerant approach targeting robustness
improvement of CMOS logic circuits.

Keywords-robustness; soft error; timing error; fault
tolerance; duplication; comparison; power consumption.

I. INTRODUCTION
Digital systems transitioned from specialized application

areas to ubiquitous mass products. The robustness of
electronic systems is one of the upcoming key requirements
in many of these application areas, including safety critical
applications and mass products [1]. While scaling supports
the need for competitive mass products it also influences
other functional and non-functional properties such as
reliability, safety and robustness. Achieving and maintaining
those properties is getting more critical with every
introduced technology nodes as treating them on the physical
level by adjusting process parameters during manufacturing
is no longer feasible. Additional challenges are posed by
feature sizes entering an area where simple inverters get
susceptible to soft errors and single event effects.

Fault tolerant architectures are essential to reach the
required robustness goals of future CMOS circuits and
systems. These architectures are commonly used to tolerate
on-line faults, i.e. faults that appear during normal system
operations, irrespective of their transient of permanent nature
[2]. However, it has been shown in [3, 4, 5] that these
architectures could also tolerate permanent defects and
hence, improve the manufacturing yield.

Fault tolerant techniques often rely on one of two basic
concepts: Error Masking or Detection/Correction. While the
first method masks possible error without giving any
information about their occurrence, the second one employs
a comparator to validate a circuit response by matching the
outputs of redundant circuit copies
(Duplication/Comparison) or to prove the absence of errors
by validating a checksum against a golden reference [6,7].

The main idea of Duplication/Comparison consists of
duplicating the logic circuit and adding a comparator to the
circuit outputs. If an error affects one of the logic circuits, the
comparator might indicate this problem depending on the
error type. A hard error in one of the two circuits is always
detected. Soft errors are often not detected due to two main
reasons: 1) Glitches caused by soft and timing errors may be
masked within the comparator, and 2) the observability of
soft and timing errors is timing dependent, due to their
transient nature.

Self-checking comparators and two-rail checkers are well
known for their capability to detect faults present at inputs
and internal nodes [16, 17, 18]. However, most of them
target Stuck-at-fault only. In [16], authors claimed the
detection of soft errors at comparator inputs, but only for
large glitches that will not be filtered by logic gates.

Consequently, the comparator structure should integrate
the ability to detect any transitions caused by soft and timing
errors. A first approach utilizing a dedicated transition
detector to capture these errors at the registers has been
previous discussed in RAZOR II [8]. The approach can also
be extended to detect errors at logic circuits by adding the
transition detector to each circuit output, thereby introducing
a high hardware overhead. In [9], the authors proposed to
combine a one-bit parity compaction with a transition
detector on its output. This solution is less costly in term of
area overhead but only offers the detection of soft errors.
Moreover, the problem of masked glitches at the compactor
remains untreated.

The main idea of this work is to combine a dynamic
transition detector and a static comparator in order to detect
all aforementioned errors (hard, soft and timing) during a
user-defined detection window. The static part of the
comparator architecture attains the detection of hard errors
while the dynamic part obtains the detection of soft and
timing errors. Moreover, this “pseudo-dynamic” comparator
consumes less power in comparison to a static comparator
with an equivalent silicon area. Finally, compared to the “full
dynamic” comparator proposed in [14], our architecture does

not suffer from logic level problem caused by PMOS
transistors implemented in the pull-down network [15].

The presented pseudo-dynamic comparator incorporates
the following properties:

• Dynamic behavior: It is able to detect and flag
glitches during a comparison window, making it
applicable for the detection of timing and soft errors.

• Increased sensitivity: Compared to a static
comparator smaller glitches are detected.

• Area: The overhead is comparable to a static
comparator.

• Power: The power consumption is reduced as
nonessential transitions outside the comparison
window are filtered.

The remainder of this paper is organized as follows.
Section II provides the fundamentals of the
Duplication/Comparison scheme. Section III presents the
pseudo-dynamic comparator architecture that embeds the
transition detection. Experimental results in terms of
detection capabilities, area overhead and power consumption
are discussed in Section IV.

II. FUNDAMENTALS OF DUPLICATION/COMPARISON
Duplication/Comparison is an error detection method

widely used in fault tolerant architectures. It consists in
duplicating the Logic Circuit (LC). The two LCs can be
identical or different but realizing the same logic functions.
The same input vector, Input feeds both LCs. Their output
vectors, A and B are compared to determine the presence of
any errors. In a complete fault tolerant architecture, the
comparison signal Comp is used to activate the error
correction flow. Figure 1 illustrates the basic scheme of the
Duplication/Comparison scheme.

The comparator performs two stages: local comparison
and global comparison. The local comparison verifies each
LC’s output pairs by using XOR functions. The global
comparison provides an accumulation of all local
comparisons with the help of an OR/AND tree. This stage is
necessary when a global comparison result is required by
next stages, such as in Detection/Correction scheme where a
single output of the Detection stage triggers the correction
mechanism at errors occurrences.

Figure 1. Duplication/Comparison principle.

The difference comparator (d_comparator, Figure 2) is
mostly used in a fault tolerance context to verify that the two
output vectors are different. The first logic level consists of
XOR gates implementing the local comparison while the
accumulation into a single bit signal is achieved by an OR-
tree.

The stability of the comparator output Comp depends on
many parameters. Since the two LCs are not physically
equivalent (process variations), Comp is not stable during the
LC computation time (max propagation delay tLC of LCs). In

addition, the comparator itself has a propagation delay tCOMP
during which glitches may occur. Consequently, Comp starts
at a stable state, result of the previous comparison, to reach
another stable state, result of the new comparison. In
between, Comp is unstable. The use of the Comp signal must
be strictly restricted to its stable state. Consequently, Comp
must be used only during a stable period called “comparison
window”, after tLC + tCOMP and before the next computation.

Figure 2. Static d_comparator structure.

In a fault-free context, Comp is constantly at logic-0
during the comparison window. If a hard error occurs, the
problem is detectable since Comp will change to a logic-1.
For soft and timing errors, the detection may be effective
since glitches are observable at Comp signal during the
comparison window. However, small glitches can be masked
by the comparator itself, which makes the detection
impossible. Fault-free and faulty (hard, soft and timing
errors) cases are highlighted in Figure 3. Consequently, the
comparator structure must be modified in order to detect any
transitions caused by soft and timing errors.

Figure 3. Comparison signal waveforms.

III. THE PSEUDO-DYNAMIC COMPARATOR ARCHITECTURE
The objective of this work is to replace the static

comparator in the Duplication/Comparison paradigm in
order to detect any transition happening within the
comparison window.

The presented pseudo-dynamic comparator checks the
two input vectors during a user-defined time window. In the
fault free case and in presence of hard errors both input
vectors are stable throughout the comparison window. In
these cases the pseudo-dynamic comparator provides the
same function as a static comparator: It returns a logic-0 if
two input vectors are equal and a logic-1 otherwise. In

presence of timing or soft errors the behavior of the pseudo-
dynamic comparator differs. While the static comparator
propagates transitions and glitches from its inputs to its
output, the pseudo-dynamic comparator will generate exactly
one transition from logic-0 to logic-1 indicating that a
difference occurred. The output stays stable at logic-1 until
the pseudo-dynamic comparator is reset at the end of the
comparison window. In addition, the pseudo-dynamic
comparator filters all transitions happening before or after
the comparison window, thereby masking all transitions
happening during tLC.

Different possibilities exist in order to implement a
pseudo-dynamic comparator with the aforementioned
characteristics:

• A dynamic transition detector, as described in [8],
could be added to the output of a traditional static
comparator. While improving the soft error tolerance
capability drawbacks are expected with respect to the
other properties. As the detector is added at the end of
the accumulation phase glitches are still masked
within the previous logic levels. In addition all
transitions, whether within the comparison window or
not, propagate throughout the complete structure and
lead to a power consumption comparable to a static
comparator.

• Adding transition detectors at LC outputs eliminates
the masking of glitches within the comparator but
results in an increased area overhead.

The pseudo-dynamic comparator presented here
implements the dynamic behavior by combining the
transition detection and the accumulation stage within the
comparator. The first logic level of the accumulation stage is
replaced by dynamic CMOS logic resulting in all of the
above-mentioned properties.

Section III.A presents a dynamic OR (DOR) gate
combining the static OR function needed in the accumulation
stage with the ability to detect and flag transitions. Section
III.B depicts the complete architecture of the pseudo-
dynamic comparator and explains its advantages over a
traditional static comparator.

A. Dynamic OR gate architecture
Figure 4 shows the schematic of a dynamic OR gate with

4 logic inputs. It consists of 9 transistors and is controlled by
a detection clock signal DC and a reset signal.

When the reset signal is at logic-0, node N is pre-charged
to VDD and thus node Z is kept at logic-0. During the
evaluation phase, both reset signal and digital clock (DC)
signal are at logic-1. T1 is off while T2 and T3 are on.
During this phase, if all signals C1, C2, C3 and C4 are at
logic-0 then T4, T5, T6 and T7 are all off. Thus, no
discharge current path exists and node N is kept at logic-1
while node Z is at logic-0. If at least one of the four logic
inputs, C1 for example, turns to logic-1 during the evaluation
phase, a current path will be formed and node N will be
pulled down which makes node Z to switch to logic-1. Note
that, once node N is discharged, it will remain at logic-0 until
the next time we reset the DOR gate with the reset signal.

Figure 4. 4-input DOR gate (DOR4)

During the evaluation phase, dynamic CMOS logic
suffers from leakage currents. Even if the pull-down network
is off, these currents will discharge node N, which causes a
false value at output Z. Therefore, we need a “keeper” to
maintain N at logic-1 when the pull-down network is off.
Moreover, this keeper must be weak enough so that when the
NMOS logic is on, it can pull-down node N to logic-0. In [8],
the authors proposed a “weak keeper” which is formed by a
two inverters loop as shown in Figure 5a. However, in order
to reduce the area overhead of the DOR, we decided to use a
feedback transistor as presented in [10]. This structure is
depicted in Figure 5b.

 a) b)

Figure 5. Keeper structures

B. Dynamic comparator architecture
Figure 6 shows a complete architecture of our pseudo-

dynamic comparator. Similarly to a traditional static
comparator as shown in Figure 2, the pseudo-dynamic
comparator is composed of two stages: comparison and
accumulation. The comparison stage consists of static 2-
input XOR gates while the accumulation stage is modified
from the one of the static comparator. Static OR gates, in the
first layer of the static OR-tree, are replaced by DOR gates.
The rest of the static OR-tree is left intact. Compared to the
static comparator, the pseudo dynamic comparator has two
more inputs, which control reset and DC inputs of the DOR
gates.

As mentioned in previous sub-section, the output of the
DOR gate is stable at logic-0 due to the keeper till the
evaluation phase, which is controlled by the DC signal.
Thus, Comp is constant logic-0. During the evaluation phase,
if the two vectors A and B are stable and identical (fault-free
case) then all signals Ci (i = 1..n) are also at logic-0 which
maintain DOR outputs unchanged. Therefore, Comp will be
constant logic-0, which means there is no error.

Figure 6. Pseudo dynamic comparator architecture.

Otherwise, if the two vectors A and B are not identical,
there will be a constant logic-1 (presence of hard error) or
glitches (presence of soft or timing error) at one of the Ci
signals. At least one of the DOR outputs will then turn to
logic-1, which makes Comp signal switch to logic-1 until the
next reset signal is applied.

The structure of the pseudo-dynamic architecture is
presented in Figure 6. Accumulation stage is active only
during the comparison window. Moreover, in fault free
conditions, which happen most of the time, DOR’s gate
outputs are at constant logic-0, which means that the Layer 2
of the Accumulation phase does not consume dynamic
power. Therefore, beside the detection capability of soft and
timing errors, the pseudo-dynamic comparator also provides
power consumption reduction.

Finally, the advantage of having a comparison window is
that the comparison signal Comp is at stable logic-0. Only in
case of error, it will switch to logic-1 and remain at this level
until the reset signal is applied. These characteristics make
the interpretation of this signal easier when used in a
complete Detection/Correction fault tolerant scheme.

IV. EXPERIMENTAL RESULTS
In order to evaluate our pseudo-dynamic comparator, we

implemented it using the Nangate Open Cell Library (OCL,
[11]), which contains standard cells for a 45nm technology
specified by the Predictive Technology Model (PTM, [12]).
In the following sub-sections we present several SPICE
simulations to highlight the added functionality to the
pseudo-dynamic comparator in contrast to the traditional
static one. In order to prove the architecture concept, only
typical conditions are taken into account at this first step of
the work. Process variations will be studied in further papers.
Then, the layout implementation is discussed.

A. Sensitivity
1) Glitches detection capability of DOR gate

In this sub-section, we verify the detection capability of
the DOR gates with respect to input glitches during the

evaluation phase. The DOR used in our simulations is
represented in SPICE as the schematic shown in Figure 4
along with the “keeper” shown in Figure 5b.

In our simulations, the DOR is reset (logic-0 on reset
input) at t0=50ps and t4=400ps while the evaluation phase
(logic-1 on DC input) is set between t1=100ps and t3=350ps.
The evaluation window is around 250ps. As the four inputs
C1, C2, C3 and C4 of the DOR are symmetric, we only
apply glitches at C1 while C2, C3 and C4 are kept at logic-0.
The glitches are applied at t2=200ps (during the evaluation
window). We simulate the output Z of the DOR gate in two
cases based on the duration of the glitch (high level) as: 1)
∆1=40ps for a large and 2) ∆2=15ps for a small glitch. Both
glitches have the rising and falling time of about 1ps.
Simulation results are shown in Figure 7.

In Figure 7, waveforms of inputs, reset and DC are
shown respectively as signals V(reset) and V(dc). Plot V(c1)
presents the glitch at input C1. Output Z of the DOR gate is
shown as V(z). We can observe that during the evaluation
phase, when C1 is at logic-0 between t1 and t2, Z is also at
logic-0. When a large glitch appears at t2, Z turns to logic-1
level, which means that the glitch was detected. Note that Z
remains at logic-1 even when the large glitch has
disappeared at time t3. It only returns to low level when the
DOR is reset at t4.

In the second case shown in Figure 7, as the glitch is too
small the output Z did not have time to completely turn to
logic-1. When the small glitch disappears, Z returns to logic-
0 because of the “keeper”. In this simulation, the small glitch
was not detected. These results clearly demonstrate that we
cannot detect glitches of size smaller than the commutation
time of the dynamic gate.

Figure 7. Glitches detection capability of DOR gate.

2) Static versus Pseudo-dynamic comparator
In this sub-section, we compare the glitches detection

capability between a static comparator and a pseudo-
dynamic comparator able to compare two 4-bit input vectors.
The static comparator is implanted in SPICE using four 2-
input XOR gates in the comparison stage and a 4-input OR
gate in the accumulation stage. In the pseudo-dynamic

comparator, we replace the 4-input OR gate with the 4-inputs
DOR gate presented in the last sub-section.

In the simulations, the pseudo-dynamic comparator is
reset (logic-0 of reset input) at t0=50ps and t4=400ps while
its comparison phase (logic-1 of DC input) is set between
t1=100ps and t3=350ps. Both comparators are used to
compare two input vectors A[3:0] and B[3:0]. Two input
pairs (A3, B3) and (A2, B2) are kept at logic-0 while the pair
(A0, B0) is kept at logic-1.

Figure 8 shows simulation results when we keep (A1, B1)
at logic-0 and apply a glitch at A1 at time t2=200ps during
∆=70ps. Glitch rising and falling time is about 1ps.
Waveforms of the inputs reset and DC of the pseudo-
dynamic comparator are shown respectively as V(reset) and
V(dc). Plot V(a1) and V(b1) presents the input signals
applied at input pair (A1, B1) of both comparators. The
output Comp of the static comparator and the one of the
dynamic comparator are respectively shown in V(comp_s)
and V(comp_pd).

Figure 8. Static vs. Pseudo-dynamic comparator

Waveforms in Figure 8 show that the pseudo-dynamic
comparator was able to detect the glitch of ∆=70ps while the
static comparator filtered it. By making the glitch wider, we
found that the pseudo-dynamic comparator could detect
glitches of 64ps while the static comparator could only detect
86ps or larger glitches. Moreover, due to their un-symmetric
internal structure, both comparators have glitch detection
capability that depends on the glitch form. Simulations with
B1 and A1 kept at logic-1 and glitch switching from logic-1
to logic-0 added to A1, reveal that the pseudo-dynamic
comparator could detect glitches of 57ps wide. In the same
conditions, the static comparator could only detect glitches
larger than 80ps.

In Figure 8, we can also see that the comparison signal of
the pseudo-dynamic comparator starts switching to logic-1 at
t=300ps while the glitch appeared at t2=200ps. In fact, this
high delay is due to the additional delay added by the XOR
gates of the comparator. Moreover, small glitches are also
filtered out by these gates. In order to reduce the delay as
well as to improve the sensitivity of DORs gates, we can
make the Comparison stage (Figure 6) dynamic instead of

the Accumulation stage. This can be done by using pseudo-
dynamic XOR gates.

B. Area Overhead
In order to evaluate the feasibility of the proposed

scheme, the 4-input dynamic OR (DOR4) was designed as a
standard cell using a full custom design style. The Open Cell
Library (OCL) is now used to compare the area of the DOR4
standard cell and a static 4-input OR. It contains standard
cells for a 45nm technology specified by the Predictive
Technology Model. The 4-input OR gate OR4 X1 of the
OCL has a cell height of 1.4μm and a cell width of 1.14µm.
Its area of 1.596µm2 is used as the baseline in the following.

Figure 9 shows the layout of the dynamic OR standard
cell. The transistors from Figure 4 are placed as follows: The
small N-well in the upper left corner contains the pull-up
transistor of the inverter, T1 as well as the feedback
transistor T8. The Pwell at the bottom holds the pull-down
transistor of the inverter together with the transistors T2 and
T3. The right hand side implements the NMOS transistors
T4-T7 used for the inputs.

The DOR4 standard cell was designed according to the
design rules and electrical rules of the FreePDK process
design kit [13]. The cell height is as in the OCL 1.4µm.
Together with a width of 1.14µm the overall area results in
1.596µm2. The overhead to implement the proposed
comparator at gate level consists of the DOR4 and the
detection clock generator (DC). While the detection clock
generation can be shared among all dynamic OR gates and
synthesized using standard clock tree synthesis algorithms
and tools more attention has to be paid for then dynamic part
(Layer 1) of the comparator architecture. Compared to the
OCL OR4 X1 the dynamic part of the comparator can be
implemented without any area penalty while the static part of
the comparator remains unchanged and is implemented using
OCL standard cell ORs. The area of the detection clock
generator is compared to the comparator considerable small.

Figure 9. Layout of 4-input dynamic OR gate.

C. Power consumption
To determine and compare the power consumption of the

comparators a case study for b05 from the ITC’99
benchmarks was carried out. According to Figure 1 two
combinational copies of b05 were synthesized for the OCL.
To account for a realistic timing variation at the comparators
input signals LC1 was restricted to the use of primitive two
input gates while LC2 used complex gates with more inputs.

This base circuit b is used as a baseline in the following. The
base circuit is extended with a static comparator, the
resulting circuit is called static (s). Attaching the proposed
pseudo-dynamic comparator to LC1 and LC2 results in the
dynamic (d) circuit.

All three circuits are then fed by a test bench applying a
fully specified test set with 120 patterns in total, using 200ns
per pattern. For the dynamic circuit the reset signal was
pulled to logic-0 at 1ns for a duration of 1ns, the comparison
window lasted from 5ns to 195ns. For all three circuits b, s
and d, the following steps were performed:

• Compile circuit b, s, d to verilog, annotate gate delays.
• Read circuit and delay annotations into simulator.
• Simulate circuit and test bench, record switching

activity.
• Perform cycle accurate timing analysis taking into

account the circuit, delay annotations and switching
activity.

TABLE I. AVERAGE POWER CONSUMPTION

Circuit Average power (W)
base 1.163x10-05

static 1.281x10-05
dynamic 1.247x10-05

Table I shows the calculated average power for all three

circuits. The power consumption of the static comparator is:
P(static) = P(s) − P(b) = 1.18x10−06 W. The average power
for the presented pseudo-dynamic comparator is significantly
lower: P(dynamic) = P(d) − P(b) = 0.84x10−06 W .
Compared to the static comparator its power consumption
amounts to only 71.186% (= P(dynamic)/P(static)). The
reduction is achieved by strictly examining only transitions
within the comparison window and ensuring that all
differences are immediately stored due to the dynamic
behavior. Moreover, in a fault free case, outputs of all DOR
gates are stable at logic-0 which means that the OR-tree
(Layer 2 of the Accumulation stage) does not consume
dynamic power.

V. CONCLUSION
A new pseudo-dynamic comparator architecture has been

presented that targets the error detection in a
Duplication/Comparison context. This architecture
combines a traditional comparator using static CMOS gates
with a dynamic CMOS transition detector. While behaving
like a static comparator in presence of hard errors the
dynamic behavior enables the identification of timing and
soft errors.

The performed analog simulations prove an increased
sensitivity to glitches during a user-defined comparison
window, thereby significantly reducing the internal
switching activity while focusing the improved detection
capabilities to the relevant period in time. Implementing the
dynamic OR (DOR) as a new standard cell in a 45nm
technology verifies the usability of the pseudo-dynamic
comparator without area penalties. The preformed power

simulations show a power reduction by nearly 30%
compared a static comparator. In addition the presented
comparator perfectly supports any fault tolerance scheme by
eliminating the necessity to explicitly latch the comparator
output.

VI. ACKNOWLEDMENT
This work was supported by the DFG project Realtest

“Test and Reliability of Nano-Electronic Systems”
(Wu245/5-2).

REFERENCES
[1] Semiconductor Industry Association (SIA), “International

Technology Roadmap for Semiconductors (ITRS)”, 2010.
[2] I. Koren and C. Krishna, “Fault Tolerant Systems”, Morgan

Kauffman Publisher, 2007.
[3] L. Fang and M. S. Hsiao, “Bilateral Testing of Nano-scale Fault-

tolerant Circuits”, in Proc. of IEEE Int. Symp. on Defect and Fault-
Tolerance in VLSI Systems, pp. 309-317, 2006.

[4] J. Vial, A. Bosio, P. Girard, C. Landrault, S. Pravossoudovitch and A.
Virazel, “Using TMR Architectures for Yield Improvement”, in Proc.
of Int. Symp. on Defect and Fault Tolerance in VLSI Systems, pp. 7-
15, 2008.

[5] J. Vial, A. Virazel, A. Bosio, P. Girard, C. Landrault and S.
Pravossoudovitch, “Is TMR Suitable for Yield Improvement?”, IET
Computers and Digital Techniques, vol. 3, No 6, pp. 581-592,
November 2009.

[6] M. E. Imhof, H.-J. Wunderlich and C. G. Zoellin, “Integrating Scan
Design and Soft Error Correction in Low-Power Applications”, in
Proc. of IEEE Int. On-Line Testing Symposium, pp.59-64, 2008.

[7] M. E. Imhof, H.-J. Wunderlich, "Soft error correction in embedded
storage elements," in Proc. of IEEE Int. On-Line Testing Symposium,
pp. 169-174, 2011.

[8] D. Blaauw et al. , “Razor II: In Situ Error Detection and Correction
for PVT and SER Tolerance”, IEEE ISSCC, pp. 400-401, 2008.

[9] D. J. Palframan, N. S. Kim and M. H. Lipasti, “Time Redundant
Parity for Low-Cost Transient Error Detection”, in Proc. of IEEE
Design, Automation & Test in Europe, pp. 1-6, March 2011.

[10] R.J. Baker, “CMOS Circuit Design- Layout and Simulation”, IEEE
Series on Microelectronic Systems, 3rd Edition.

[11] Nangate. 45nm Open Cell Library v1.3. http://www.nangate.com,
2009.

[12] W. Zhao and Y. Cao, “Predictive technology model for nano-CMOS
design exploration”, ACM Journal on Emerging Technologies in
Computing Systems , Vol. 3, No. 1, 2007.

[13] J. Stine et al., “FreePDK: An Open-Source Variation-Aware Design
Kit”, IEEE Int. Conf. on Microelectronic Systems Education, pp. 173-
174, 2007.

[14] C. C. Wang et al., “High Fan-in Dynamic CMOS Comparators with
Low Transistor Count”, IEEE Trans. on Circuits and Systems:
Fundamental Theory and Applications, Vol. 50, No. 9, pp. 1216-
1220, 2003.

[15] C. -Y. Kim and L. -S. Kim, “Low-power and high-performance
equality comparator using pseudo-NMOS NAND gates”, IEEE
Electronics Letters, Vol. 40, No. 18, pp. 1100-1101, September 2004.

[16] M. Omaña, D. Rossi and C.Metra, “High Speed and Highly Testable
Parallel Two-Rail Code Checker”, in Proc. of IEEE Design,
Automation and Test in Europe Conference, pp. 608-613, 2003.

[17] S. Kundu, E. S. Sogomonyan, M. Goessel and S. Tarnick, “Self-
Checking Comparator with One Periodic Output”, in IEEE Trans. on
Computers, Vol. 45, No. 3, March 1996.

[18] J-C.Lo, “A Novel Area-Time Efficient Static CMOS Totally Self-
Checking Comparator”, IEEE Journal of Solid-State Circuits, Vol. 28,
No. 2, February 1993.

