
OTERA: Online Test Strategies for Reliable Reconfigurable Architectures
— Invited Paper for the AHS-2012 Special Session “Dependability by reconfigurable hardware” —

Lars Bauer†, Claus Braun∗, Michael E. Imhof∗, Michael A. Kochte∗
Hongyan Zhang†, Hans-Joachim Wunderlich∗ and Jörg Henkel†

∗ITI, University of Stuttgart, Pfaffenwaldring 47, D-70569, Stuttgart, Germany
Email: {braun, imhof, kochte}@iti.uni-stuttgart.de, wu@informatik.uni-stuttgart.de

†Karlsruhe Institute of Technology, Haid-und-Neu-Str. 7, D-76131, Karlsruhe, Germany
Email: {lars.bauer, hongyan.zhang, henkel}@kit.edu

Abstract—FPGA-based reconfigurable systems allow the on-
line adaptation to dynamically changing runtime requirements.
However, the reliability of FPGAs, which are manufactured in
latest technologies, is threatened not only by soft errors, but
also by aging effects and latent defects. To ensure reliable
reconfiguration, it is mandatory to guarantee the correct
operation of the underlying reconfigurable fabric. This can
be achieved by periodic or on-demand online testing.

The OTERA project develops and evaluates components and
strategies for reconfigurable systems that feature reliable re-
configuration. The research focus ranges from structural online
tests for the FPGA infrastructure and functional online tests
for the configured functionality up to the resource management
and test scheduling. This paper gives an overview of the project
tasks and presents first results.

I. INTRODUCTION

Reconfigurable architectures are continuously gaining im-
portance, since they are particularly interesting for a broad
field of applications. Today, especially systems based on
Field-Programmable Gate Arrays (FPGAs) can be found
from high-end HPC computing [1] and large research sys-
tems [2], down to a plethora of sophisticated embedded
applications [3]. Partial runtime reconfiguration is one of
the key innovations that have been introduced with latest
generations of FPGAs. It allows the reconfiguration of
selected parts of the FPGA’s fabric at runtime without
affecting other regions that are currently in use. Hence,
such runtime reconfigurable systems provide an impressive
degree of flexibility and they allow designers to find the
optimal balance between computational performance and
power consumption for their applications at runtime [4].

Since these FPGAs are typically manufactured in latest
semiconductor process technologies (e.g. 28nm for Xilinx
Virtex-7 and Altera Stratix V), they must not only increas-
ingly cope with soft errors, but also with aging effects,
variations, and latent defects in the reconfigurable fabric [5–
7]. These reliability threats are intensified by long mission
times and harsh environmental conditions (e.g. temperature).
As a consequence, classic production and burn-in tests are no
longer sufficient to guarantee reliable reconfigurable systems
throughout the whole product lifecycle. Thus, for example,
the reliable operation of the FPGA’s reconfigurable fabric
has to be constantly monitored and verified by thorough
online testing. This is especially challenging for runtime
reconfigurable systems, because they change their hardware
configuration dynamically as part of their normal operation.

The required components and strategies for such reliable
runtime reconfigurable systems are explored and developed

within the scope of the OTERA project (Online Test Strate-
gies for Reliable Reconfigurable Architectures). A structural
pre-configuration online test (PRET) is the first basic key
component, designed to independently test the hardware
structure of specific regions of the reconfigurable fabric,
so called containers, periodically or on-demand. The PRET
consists of tests for all major FPGA structures, such as the
CLBs or the interconnects. In addition to the PRET, the
instantiated accelerators (reconfigured to containers) have to
be functionally tested after each successful reconfiguration.
This functional post-reconfiguration online test (PORT) is
the second basic key component, since it ensures that
the configured accelerators correctly deliver the expected
functionality and timing.

Although of fundamental importance, these two com-
ponents only form the basis for a reliable reconfigurable
system. They have to be supplemented by dedicated compo-
nents for online monitoring, prediction, and control to allow
the system a pro-active adaption to changing environmental
conditions. Besides the selection, evaluation, and optimiza-
tion of suitable solutions for each of these components,
the overall system integration is a very challenging task. In
contrast to previous approaches, these components may not
be considered and designed isolated from each other. They
must be inherent parts of the system-level design process to
allow a seamless integration into a runtime reconfigurable
system with minimum impact on the system’s performance.

The paper is structured as follows: Section II gives an
overview of the related work in the fields of reconfigurable
architectures, dependable systems and test. Section III de-
tails the structure of a system with reliable reconfiguration
through online testing. A corresponding case study is pre-
sented in section IV, followed by an outlook in section V
and the conclusion.

II. RELATED WORK

A. Reconfigurable Architectures
Different kinds of reconfigurable architectures evolved in

the last years [8]. Most architectures focus on exploiting
the potential of runtime reconfiguration to increase the
performance of applications. Some architectures reconfigure
entire tasks as dedicated hardware implementations [9],
whereas other architectures reconfigure application-specific
accelerators that are invoked by the application that executes
on a processor [10, 11]. Despite these advantages of runtime
reconfigurable architectures their management is challeng-
ing, especially when it comes to testing.



The regions of the reconfigurable fabric that are never
reconfigured during runtime can be tested with established
functional approaches. However, the regions that are recon-
figured during runtime need a different testing approach
(focus of this paper) as their configurations are not know
statically. State-of-the-art reconfigurable systems focus on
increasing the performance [9–12] or on saving energy
[4]. However, they neither consider testing the runtime
reconfigurable fabric as a goal or constraint, nor do they
propose testing methods and their integration into a runtime
reconfigurable system, as done in this work.

Jacobs et al. [13] proposed a reconfigurable fault tolerance
framework that allows dynamically reconfiguring between
three different reliability/performance trade-offs. However,
they do not consider structural faults of the reconfigurable
fabric, adapting the test strategy automatically, or provide
graceful degradation methods for reconfigurable architec-
tures.

B. Dependable Systems

Dependability, among other system properties, comprises
both reliability and availability [14]. The focus of the
OTERA project, is to increase reliability by ensuring that
the used reconfigurable fabric is fault-free, and to increase
availability by fast online repair and use of partially faulty
resources.

For the test of logic resources of the fabric, the stuck-
at fault model is most commonly used. Dedicated fault
models exist for interconnects [15]. Test generation for delay
faults for the fabric has been introduced in [16]. Apart
from these permanent faults, transient events can cause data
corruption in memory elements. Especially for SRAM-based
FPGAs, soft errors in the configuration memory can alter the
configured function. Faults in the reconfiguration logic, e.g.
address decoder faults, can result in arbitrary behavior of
the configured fabric.

The reliability of a system can be increased by tests
targeting the permanent faults, and fault-tolerance measures
such as time, information or structural redundancy for
concurrent error detection. If executed autonomously and
online, these techniques allow a system to detect and correct
errors. Autonomous adaptation to faults as well as graceful
degradation becomes possible.

Classical approaches, such as duplication with compari-
son, triple modular redundancy or principles of self-checking
circuits [17] have been optimized for FPGAs [18] and
extended by FPGA specific techniques like scrubbing [19].

Sensors in the system allow to monitor the circuit behavior
and temperature [20, 21]. The sensor data can be aggregated
and used to predict failures. With failure detection or pre-
diction at hand, systems based on reconfigurable fabric can
perform self-repair [22–25] to ensure that mission logic does
not use faulty hardware blocks of the fabric.

First approaches [26] bring together system self-awareness
by monitoring application behavior and system adaption to
optimize runtime performance. While the paradigm of online
monitoring and self-adaptation is indeed embodied in this
recent work, it is limited to the application performance.
With the system-wide integration of monitors, tests and

repair, the OTERA project targets dependable systems which
autonomously apply fault-tolerance techniques as required
while imposing as little impact on application performance
as possible. The tight integration of fault tolerance tech-
niques into reconfigurable systems transparent to the appli-
cation is a novel challenge.

C. Test Methods for Reconfigurable Architectures

The thorough test of the FPGA fabric requires fundamen-
tal structural knowledge and the test generation is typically
tailored to a specific FPGA architecture. Application de-
pendent tests [27] target the faults relevant for a known
fixed application configuration of the FPGA. In contrast,
application independent tests target the whole fault universe
not limited to a specific use of the reconfigurable resources.
Such a test consists of multiple test sessions, each comprised
of a test configuration (TC) and a set of stimuli. A TC
configures the FPGA in a way that a set of the structures or
the function of the structures is controllable and observable
so that appropriate test stimuli can be applied to test for
faults. The number of required test configurations may
range from a few up to a few hundreds if programmable
interconnect structures are completely included in the tests
[28].

Different test strategies are used for the logic and sequen-
tial parts of CLBs, interconnects, I/O cells and specialized
cores like RAM or DSPs. For memories, high-coverage
functional March tests [29] are used, for arithmetic structures
like multipliers or DSPs, functional tests with high structural
fault coverage are possible [30].

For an online in-field test of FPGAs, external equip-
ment for test pattern generation (TPG) and output response
analysis (ORA) [31, 32] is not available. Internal testing
approaches based on built-in self-test (BIST) principles
include TPGs and ORAs in the unit under test.

The highly regular nature of FPGAs allows to configure
the structures under test into an iterative logic array (ILA
[33]) such that the resulting test time is constant and
independent of the array size (C-testability [34]). FPGAs
with support for memory and partial memory readback allow
a test strategy similar to scan design where the response
is captured in sequential elements, read back, and finally
analyzed [35, 36]. The readback increases the time for test.

While the programmable interconnect structures are to
some extent already tested during the test of other structures,
dedicated deterministic testing based on multiple test config-
urations has been proposed [37–39]. Due to the complexity
of the interconnect configuration circuitry, a very high num-
ber of TCs is required.

Using partial dynamic reconfiguration of FPGAs, the test
reconfiguration can be conducted by an external [40] or
embedded processor during runtime [41–43]. The access to
an internal high-bandwidth configuration port significantly
reduces the time required for reconfiguration.

In addition to testing, the homogeneous structure of an
FPGA allows the efficient diagnosis of faulty components.
High resolution is achieved by failure data analysis and
additional dedicated TCs to distinguish faults with equal
signatures [44].



Both test and diagnosis can be executed offline, requiring
idle periods of the unit under test, or online, allowing the
parts of the array which are currently not under test to
continue functional operations. The Roving STARs (self
testing areas) method [45] partitions the FPGA into multiple
regions which can be either used functionally or tested by
an online BIST scheme controlled by an external module.

In the OTERA project, the structural PRET is imple-
mented by combining the state-of-the-art in FPGA testing
to achieve high fault coverage in the reconfigurable fabric.
The reconfiguration process for PRET is tightly integrated
into the functional system scheduling. The existing recon-
figuration features in the system are reused for PRET.

III. RELIABLE RECONFIGURATION BY ONLINE TESTING

The correct operation of mission logic, instantiated into a
reconfigurable container, mandates that both the underlying
reconfigurable fabric is free of defects, and the reconfigu-
ration process is conducted without error. To achieve this
we consider systems where containers have a static size, a
static position, can be isolated from the system for testing,
and provide an access for test stimuli. After presenting the
system architecture that we use for evaluation, this section
details how a structural pre-configuration online test (PRET)
and a post-reconfiguration online test (PORT) are integrated
into the system to achieve this goal.

A. System Architecture
Fig. 1 shows the system architecture of a typical re-

configurable processor that connects runtime reconfigurable
containers (right side) to a non-reconfigurable core processor
(left side). Even though the presented PRET and PORT
approaches are conceptually orthogonal to the particular
system architecture, we describe them with respect to this
system architecture as it is also used for evaluation.

R
ec

on
f. 

C
on

ta
in

er
 

Inter-
con-
nect 

… 

… 

Memory Controller 

Co
re

 P
ip

el
in

e Data Cache/Scratchpad 

Off-Chip 
Memory 

IF

ID 

MEM 

WB 

EXE 

R
ec

on
f. 

C
on

ta
in

er
 

Inter-
con-
nect 

Load/Store 
Units & 
Address 

Generation 
Units 

Intercon-
nect 

TPG 
& 

ORA 

Inter-
con-
nect 

Inter-
con-
nect 

Interface 

Figure 1. Overview of the reconfigurable processor architecture consist-
ing of the reconfigurable containers, the core pipeline, and the memory
hierarchy [46]

The reconfigurable containers are connected to each other
using an interconnect infrastructure that consists of four
bi-directional segmented buses. This interconnect infras-
tructure also connects the containers to the core pipeline
(providing access to the register file) and to the system
memory hierarchy. The core pipeline is extended by Special
Instructions (SI), i.e. assembler instructions that perform
application-specific computations such as transformations,
filters, encryption etc. One or multiple accelerators need to
be reconfigured to the containers to implement an SI. A run-
time system decides, which SIs are reconfigured and when
they are reconfigured. More details about this architecture

and its runtime system (not required for the content of this
paper) are available in [11].

B. PRET: Pre-Configuration Online Test

To ensure that the reconfigurable fabric of a container is
free of defects, it is necessary to exercise the fabric such
that effects of defects become observable. This is achieved
by the structural pre-configuration online test which targets
a set of faults in the fabric.

1) Fault Model: The stuck-at fault model (SAF) is widely
adopted in the literature for FPGA testing [47]. For com-
plex FPGA sub-components such as LUTs and flip-flops,
typically only a functional description is available from the
vendor and structural implementation details are missing.
This results in a weak modeling of defects. Here, the stuck-
at fault model is used for components and interconnects
in which the structural information is sufficient for fault
derivation. For the remaining components, functional and
cell faults are targeted during test generation resulting in a
hybrid fault model. The tests are generated under the single
fault assumption.

LUT in function mode: The LUT in function mode
is treated as a combinational function of n inputs and m
outputs, and the cell fault model (CFM) [48, 49] is applied.
The cell faults describe any mismatch at the outputs of a
unit under test for the possible inputs. The number of cell
faults equals the number of possible inputs multiplied by the
number of faulty outputs 2m(2n − 1).

LUT in RAM mode: If the LUT is operated in RAM
mode, functional memory faults [29] are targeted, i.e. ad-
dress decoder faults (AF), stuck-at faults, transition faults
(TF), coupling faults (CF), and data retention faults (DRF).

Sequential elements: CLBs contain separate sequential
elements such as flip-flops, latches, or LUTs in shift register
mode. For these elements, the considered faults are stuck-at
and transition faults (slow-to-rise, slow-to-fall).

2) TC Generation for CLB Elements: The complexity of
a CLB requires multiple TCs to exercise all components
in a test session. In each TC, the fabric under test is
configured such that a subset of the components in the
CLBs is activated and tested. The test configurations are
deterministically designed to guarantee full fault coverage.
Testing is applied on a container. Each TC targets a specific
set of faults in the subcomponents in each CLB and consists
of two main parts:

i. Container setup: CLBs are configured in a specific way
to ensure the test of targeted faults.

ii. Test stimuli: Applied to exercise the configured compo-
nents in the CLBs.

In addition, test infrastructure is required to generate the
stimuli (TPG) and evaluate the responses (ORA). The TPG
and ORA may differ between TCs and they are external to
the container under test as shown in Fig. 1.

The regular structure of the reconfigurable fabric allows
the efficient and scalable test of large containers by con-
necting the CLBs into a C-testable array as exemplified in
Fig. 2. The resulting test time for the array is very low and
independent of the array size.



A TPG feeds the test patterns at the start of each array and
the responses are aggregated and evaluated at the end of the
array using an ORA. In FPGA testing, typically all possible
stimuli are applied to the components under test. For the
TPG, a counter or linear feedback shift register is used.
Responses are evaluated by mutual comparison, as indicated
in Fig. 2. To avoid a slow test clock, the TCs are pipelined
by utilizing the sequential elements included in each CLB.

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

TPG

(Counter/

LFSR)

ORA

Container

Figure 2. Container configured into a C-testable array with external test
pattern generator and output response analysis [46]

For the LUT in function mode, all cell faults are targeted.
This is achieved by two TCs computing the XOR and
XNOR of the inputs, and by applying the exhaustive set
of test patterns to the inputs. For the shift register mode
of the LUT, stuck-at and transition faults are tested for by
applying standard scan chain test patterns [50]. The LUTs in
shift register mode are connected into multiple shift chains.
The outputs of these chains are compared mutually for
response evaluation. Individual flip-flops in CLBs can be
simultaneously tested in the same TC by including them
into the chain. An n-input LUT can also implement a 2n-
bit RAM which is tested by the MATS++ [29] algorithm to
ensure coverage of all SAFs, AFs and TFs. The test patterns
are generated at the global TPG.

The multiplexers in the CLBs are tested by applying all
possible configurations to exercise all select combinations.
The data path is tested for SAFs by applying the 0 and
1 stimuli. Multiplexer testing is typically included in other
tests since they are on the sensitized path used for testing
other components.

Many FPGA architectures contain dedicated carry chains
consisting of multiplexers and XOR cells. To test for all
the SAFs in the carry chain efficiently, the elements are
configured into pipelined C-testable arrays. Two TCs are
required to fully test the carry chain.

Testing flip-flops in CLBs is identical to testing the LUT
in SR mode. If there are level sensitive latches, a separate
TC is required which creates a scan chain of latches. To
guarantee proper latch function two non-overlapping clocks
are used.

3) TC Generation for Container: For a container consist-
ing of multiple CLBs, the TCs are generated according to
Fig. 3. In the first step, the targeted CLBs in the container
are selected, depending on its size and location. Then, the
required TPG and ORA for the different tests are generated.
In the last two steps, the configuration of the container is
created by instantiating TC templates for the selected CLBs.
The resulting configuration data is stored in an XDL (Xilinx
Design Language, [51]) file.

C. PORT: Post-Reconfiguration Test
The structural integrity of the fabric can be assessed by

execution of PRET. This however does not guarantee the

Specify container 

by the corner 

coordinates

Generate TPG/

ORA

Instantiate test 

configuration in 

container sites

Generate 

container setup

1.

2.

3.

Computes set of 

targeted CLBs 

Using predefined 

templates

Independent of the 

container (C-testability)

Generate final 

XDL file

TC

TC

T
P

G
/O

R
A

TC

T
P

G
/O

R
A

TC

T
P

G
/O

R
A

4.

P
R

E
T

 g
e

n
e

ra
ti
o

n

XDL

XDL

XDL

XDL

Figure 3. XDL file generation flow for CLB TCs [46]

correct configuration and integration of mission logic in a
container. Errors may occur during loading the configuration
bitstream, e.g. due to faults in the configuration logic,
or transient events such as crosstalk, radiation or other
sources of transient events. As a consequence, the configured
function of the targeted container may be wrong, or the
configuration of other containers may be adversely altered.

A functional test of the configured logic is able to
check whether the reconfiguration process completed with-
out errors and the mission logic interfaces correctly to the
surrounding system. This shall be implemented by PORT
which is a functional test tailored to the mission logic of
the containers. PORT is executed after reconfiguration of
a container, and periodically during operation to uncover
corruption of configuration bits due to soft errors.

A PORT can be conducted by functional patterns, random
patterns and deterministically generated patterns exercising
structures with low controllability or observability. PORT
does only test the parts of the container fabric which are
used by the mission logic. Both built-in self-test as well
as software-based self-test principles for test generation
and response evaluation can be exploited. In contrast to
PRET, POST does not reconfigure the tested structures and
thus exhibits a much lower performance impact on the
application.

D. System Integration and Scheduling
We now explain how the developed PRET and PORT

tests are integrated into the system. Fig. 4 shows an ex-
cerpt of the reconfigurable fabric with three containers and
the components involved in testing them. In the first step
(Fig. 4a), the runtime system decides that an accelerator shall
be reconfigured into a particular container (to implement
a Special Instruction), which triggers the demand to test
the container first. As performing an exhaustive PRET test
would delay the accelerator reconfiguration significantly,
only an incremental PRET is performed. This means that not
all test configurations (TCs) are applied to the container, but
only some of them. The runtime system decides how many
TCs should be applied before reconfiguring the accelerator
(potentially none), depending on the test history. For each
container, the runtime system keeps track of which TCs
were applied to this container in the past and how much
time passed by since the last exhaustive PRET test of the
container. Depending on this test history, it activates the
PRET component that reconfigures the selected TCs into
the container and uses the test pattern generator and the
output response analyzer to exercises the reconfigurable



PORT

Runtime
System

Recon-
fig Port Conf.

Data

PRET PORT

Runtime
System

Conf.
Data

PRET

b) Basic Pre-reconfiguration online Test
(PRET)

PORT

Runtime
System

Conf.
Data

PRET

c) Reconfiguring the Accelerator into the
Container

PORT

Runtime
System

Recon-
fig Port Conf.

Data

PRET

a) Initial Binding of Accelerators to
Containers

d) Initial Post-reconfiguration online Test
(PORT) and subsequent PORTs (from
time to time)

Recon-
fig Port

Recon-
fig Port

Figure 4. Example for typical runtime flow with PRET and PORT

fabric (Fig. 4b).
If no structural defect is found, the runtime system recon-

figures the desired accelerator into the container (Fig. 4c).
Before the accelerator can be used to implement a Special
Instruction (SI), the runtime system triggers PORT to test
whether the reconfigured accelerator operates as expected.
Additionally, accelerators in other containers that are used
to implement the SI are tested as well to ensure that
they were not affected by the reconfiguration. As PORT
operates significantly faster than PRET, it can also be applied
during normal operation (i.e. not only after reconfiguring
a container) and the runtime system schedules subsequent
PORTs regularly.

IV. CASE STUDY

To demonstrate the idea of PRET presented in sec-
tion III-B, we integrated the PRET scheme into the re-
configurable architecture introduced in section III-A and
investigated the PRET overhead and the test effectiveness
of it.

A. Experimental Setup
The reconfigurable architecture introduced in section III-A

forms the hardware platform for the experimental evaluation.
A Leon-3 processor is used as core pipeline with 10 attached
containers (see Fig. 1). In our prototype, each container con-
sists of 4x20 CLBs (other sizes are also possible). The actual
hardware prototyping is performed on a XUPV5 FPGA
board with a Xilinx Virtex-5 LX110. A SystemC-based
simulator is used for evaluating different system parameters
like the number of containers. The system operates at a clock
frequency of 100 MHz and a reconfiguration bandwidth of
66 MB/s. Although the internal configuration access port
(ICAP) of the Xilinx FPGA can operate with up to 400
MB/s, the actual configuration bandwidth depends on the
provisioning speed of the partial bitstream, which is stored
in off-chip DRAM.

For the purpose of case study, a sophisticated H.264
video encoder encoding 500 frames is chosen as application.
The encoder is a challenging application since it frequently
reconfigures accelerators in the containers. In detail, the

H.264 encoder consists of three different functional blocks
that are executed in sequence for each video frame: Motion
estimation, encoding, and in-loop deblocking filtering. Each
of these functional blocks requires different Special Instruc-
tions (SIs) and each SI demands multiple accelerators, hence
the system reconfigures the containers accordingly. In total, 9
SIs are implemented for the encoder by using combinations
of 10 different types of accelerators. The implementation
of the H.264 encoder on the reconfigurable system leads to
a speedup of more than 20x in comparison to the Leon-3
without SIs.

For the integration of the proposed PRET scheme, the
TPG and the ORA have been attached to the containers as
shown in Fig. 1. The runtime system, which controls the
reconfigurations, was extended to schedule test configura-
tions in regular intervals. The reconfiguration process for
the test configurations is identical to the reconfiguration of
the accelerators.

B. Test Overhead and Results

Realizing the benefits of PRET leads to overhead in space
and time that are discussed in the following. Additional
hardware blocks for TPG and ORA are required. They only
introduce minimal area overhead as shown in section IV-B1
and have no affect on the system clock frequency. Tests are
regularly scheduled to containers like functional workloads.
The test execution may delay the configuration of accelera-
tors or consume certain communication resources, and thus
have a negative impact on the performance of the application
as presented in section IV-B2.

1) Test Configurations: A full test session consists of
multiple test configurations (TCs), each of which activates
and tests a subset of the components in the CLBs of a
container as described in section III-B. Altogether nine TCs
are required to test all subcomponents in the CLBs. Partial
bitstreams for these TCs are generated and stored in memory
so that the runtime system of the reconfigurable architecture
can fetch and configure them into the FPGA to test a
container.

Table I provides an overview on the nine TCs. Column
one shows the configuration number. Column two shortly
describes the portion of each CLB being tested. Columns
three and four list the PRET overhead in CLBs used for
the TPG and ORA and the size of the generated partial
bitstream. The total area overhead introduced by PRET for
all TCs is 17 CLBs. The test time for a container consists
of two parts: the container configuration time and the test
pattern application time (‘test length’ in Table I). Typically,
the latter ranges from a few cycles up to a few hundred
cycles while the former dominates the test time with tens
of thousands of cycles. The configuration time is directly
proportional to the size of the configuration data (partial
bitstreams) and the reconfiguration bandwidth. As shown in
Table I, the bitstream size of each TC varies from 22.3 KB to
28.6 KB, which corresponds to a configuration time between
0.33 ms and 0.42 ms at 66 MB/s configuration bandwidth,
i.e. between 33 and 42 thousand cycles at 100 MHz system
frequency.



TC Tested CLB subcomponents
PRET Bitstr. Test
overh. size length

[CLBs] [KB] [Cycles]

1 LUT configured as XOR, 2 24.0 64connected to FF

2 LUT configured as XNOR, 2 24.0 64connected to FF

3 Carry MUX, interleaved 1 28.6 6with MUX and latch

4 Carry MUX, interleaved 1 26.1 6with MUX and latch

5 Carry XOR, interleaved 1 28.0 6with MUX and FF

6 Carry XOR, interleaved 1 28.2 6with MUX and FF

7 Carry-in/-out tested with 1 27.1 6multiplexed scan chain

8 LUT configured as SR 1 22.9 6with slice MUX

9 LUT configured as RAM 7 22.3 320with slice output

Table I
CLB TEST CONFIGURATIONS: OVERHEAD, BITSTREAM SIZE AND

LENGTH [46]

2) Concurrent Test Scheduling: When a container is not
being used and the configuration port is available, TCs can
be configured into that container and tests can be performed
on it without affecting the system performance. In the
general case, tests are scheduled like functional workload
and compete with accelerator reconfigurations (configuration
port) and SI executions (interconnect buses), which may
have a negative impact on the performance of the system.

We use a regular approach that schedules one TC after
a certain number of Accelerator Configurations (ACs) to
demonstrate that the test has negligible effects on the per-
formance while still maintaining high test effectiveness. For
instance, one TC is scheduled before every AC or before
every 2nd AC, 3rd AC, etc. This corresponds to one AC per
TC or 2 ACs per TC etc. Fig. 5 shows the simulation results
for the performance loss under different test frequencies
(from 1 AC/TC to 4 ACs/TC), depending on the number
of reconfigurable containers that are available (i.e. the size
of the reconfigurable fabric). Using a lower test frequency
(e.g. 4 ACs/TC) reduces the overhead. Additionally, recon-
figurable architectures with more containers have a lower
overhead as more containers are still operational during the
test. For instance, in a reconfigurable architecture with 5
containers, only 4 containers can be used to implement SIs
during a PRET test, whereas in an architecture with 14
containers, still 13 containers can be used for acceleration.

Fig. 6 shows the average test period. For example, for
a reconfigurable architecture with 10 containers and a test
frequency of 3 AC/TC, each container is completely tested
every 4.3 seconds while the performance loss introduced
by PRET is only 0.33%. To give more insight into the test
effectiveness, Fig. 7 shows the number of completed test
runs (1 complete test run of a container requires 9 TCs)
performed in each container during the application execution
time for this architectures.

It is noticeable that in Fig. 7 some containers are tested
more than twice as often as other containers. This directly
depends on the number of accelerator reconfigurations of
these containers. Some accelerators are reconfigured rather

0.0% 

0.2% 

0.4% 

0.6% 

0.8% 

1.0% 

1.2% 

1.4% 

5 6 7 8 9 10 11 12 13 14 

Pe
rf

or
m

an
ce

 lo
ss

 [%
] 

1 AC/TC 
2 ACs/TC 
3 ACs/TC 
4 ACs/TC 

Number of containers 

Figure 5. Performance loss of the video encoder application under different
test frequencies and number of containers

0 

2 

4 

6 

8 

10 

12 

14 

16 

5 6 7 8 9 10 11 12 13 14 
Av

er
ag

e 
te

st
 p

er
io

d 
[s

] 

1 AC/TC 
2 ACs/TC 
3 ACs/TC 
4 ACs/TC 

Number of containers 

Figure 6. Average test period under different test frequencies and number
of containers

seldom, which directly affects the test frequency of the
corresponding containers. Generally, reconfigurable archi-
tectures with a large number of containers perform less
reconfigurations (in the extreme case, the reconfigurable
fabric is large enough to provide all required accelerators
at the same time). This is the reason why the test period
in Fig. 6 increases significantly for systems with more
than 11 containers. In such systems, some containers are
reconfigured rather seldom, thus it takes longer until the
entire system is tested. However, the longest observed test
period of 14 seconds is still orders of magnitudes shorter
than the process of aging which impacts circuit parameters
over the duration of years.

V. FROM RELIABLE RECONFIGURATION TO
DEPENDABLE SYSTEMS

Reliable Reconfiguration ensures the integrity of the con-
figured function and the underlying fabric. The dependability
of a system is affected during runtime by environmental
effects such as a changing environment and transient faults.
A dependable system therefore needs to be self-aware of
its environment in order to adaptively choose appropriate
countermeasures (Fig. 8). Concurrent error detection (CED),
containment and recovery contribute in maintaining correct
operation under transient faults. Diagnosing the affected
system parts and classifying the root cause as transient or
permanent enables the system to take appropriate actions,
such as containment/recovery or graceful degradation, ac-
tively due to the monitored effects or pro-actively based on
a prediction.



0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r 

o
f 

co
m

p
le

te
 t

e
st

 r
u

n
s 

Container ID 

Figure 7. Number of complete test runs in individual containers with a
test frequency of 3 ACs/TC

Monitoring	
  /	
  
Predic.on	
  

Self	
  Awareness	
  /	
  Self	
  Adapta.on,	
  
Efficient	
  Resource	
  U.liza.on,	
  

Dependable	
  Opera,on	
  

Diagnosis	
  

Error	
  Containment	
  
and	
  Recovery	
  

Detec.on	
  /	
  Localiza.on	
  

Figure 8. Components for dependable systems

A. Concurrent Error Detection (CED), Containment

The system model is extended towards transient faults
which allows the introduction of concurrent test and check-
ing methods. Careful evaluation of the detection capabilities
and costs (e.g. area, delay, power) of different solutions
allows to select appropriate methods specifically for each
container. The runtime system trades-off test intensity, sys-
tem stress and environmental conditions and selects the
appropriate mechanisms (e.g. error correction, checkpoints,
recomputation) to handle and contain errors.

Extending reliable reconfiguration with monitoring and
preventive system adaption at runtime enables efficient con-
current error detection and containment. Monitors of non-
functional observables (e.g. frequency, temperature) get in-
corporated and placed where required, providing self aware-
ness to the system. The runtime system determines their
position to enable preventive system adaptation. A pro-active
reaction (based on online monitor prediction) increases the
system dependability.

B. Diagnosis

Diagnosing observed errors allows to classify their cause
as transient or permanent. In case of transient faults, error
containment prevents negative dependability influence. In
case of permanent faults, the impact on performance and
containment capabilities is significant. If adaption of non-
functional parameters such as workload of a container is
not possible or not desired, the faulty component needs to
be disabled or isolated. In order to minimize the impact on
the system (e.g. if only a fraction of a container is faulty),
the online diagnosis needs to locate the component in a fine-
grained way.

C. Graceful degradation in case of structural faults
When one of the testing mechanisms (e.g. PRET, PORT,

CED) detects a fault in a container and the fault turns out
to be permanent, then an exhaustive PRET together with a
diagnosis is triggered, as shown in Fig. 9a. The diagnosis
analyzes the result of PRET to determine the location of the
fault. In Fig. 9a this is indicated by crossing out a particular
region of the container that was identified as faulty.

PORT

Runtime
System

Accel.
Data

PRET PORT PRET

b) Utilizing partially faulty resources by
re-binding

a) If PORT detects a fault, execute
exhaustive PRET with Diagnosis

Diagnosis

Runtime
System

Accel.
Data

Diagnosis

Recon-
fig Port

Recon-
fig Port

Figure 9. Using partially faulty resources

In general, a faulty container cannot be used to host
accelerators anymore. If the faulty fraction of the container
is known, it may be still possible to use the partially faulty
resource for some accelerators. The runtime system has a
notion of resource requirements of accelerators and can com-
pare that with the identified faulty resource. When binding
accelerators to containers, the runtime system has to ensure
that the accelerator that shall be reconfigured to a container
does not use a partially faulty region of this container
(Fig. 9b). In the best case, all demanded accelerators can
still be configured to the available containers by re-binding
them accordingly, which allows graceful degradation of the
system.

VI. CONCLUSION

In this paper a brief overview of the research goals and
activities within the OTERA project is provided. A case study
is presented that describes the application of the developed
pre-configuration online test (PRET) for a runtime reconfig-
urable system. The results show the high flexibility and low
overhead for the structural online test of the FPGA infras-
tructure (0.33% performance loss when exhaustively testing
all containers every 4.3 seconds). Moreover, an outlook on
the remaining research tasks and required components and
strategies for reliable reconfigurable systems is given.

VII. ACKNOWLEDGMENT

This work is supported in parts by the German Re-
search Foundation (DFG) as part of the priority pro-
gram “Dependable Embedded Systems” (SPP 1500 -
http://spp1500.itec.kit.edu).

REFERENCES

[1] http://www.conveycomputer.com/, Convey Computer Corp.
[2] S. Kirsch et al., “An FPGA-based high-speed, low-latency

processing system for high-energy physics”, in Conf. on Field
Program. Logic and Applications, 2010, pp. 562–567.

[3] P. Garcia et al., “An overview of reconfigurable hardware
in embedded systems”, EURASIP Journal on Embedded
Systems, pp. 1–19, 2006.

[4] M. Shafique, L. Bauer, and J. Henkel, “Selective instruction
set muting for energy-aware adaptive processors”, in Int’l
Conf. on Computer-Aided Design, 2010, pp. 353–360.



[5] N. Metha and A. DeHon, “Variation and aging tolerance
in FPGAs”, in Low-Power Variation-Tolerant Design in
Nanometer Silicon. Springer Science+Business, 2011.

[6] J. McPherson, “Reliability Challenges for 45nm and Beyond”,
in Design Autom. Conf. (DAC), 2006, pp. 176–181.

[7] S. Bhunia and R. Rao, “Guest editors’ introduction: Managing
uncertainty through postfabrication calibration and repair”,
IEEE Design & Test of Computers, vol. 27, no. 6, pp. 4–5,
2010.

[8] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Re-
configurable Computing. Springer, 2007.

[9] E. Lübbers and M. Platzner, “ReconOS: Multithreaded pro-
gramming for reconfigurable computers”, ACM Trans. on
Embedded Comp. Systems, vol. 9, pp. 8:1–8:33, 2009.

[10] S. Vassiliadis et al., “The MOLEN polymorphic processor”,
IEEE Trans. on Comp., vol. 53, no. 11, pp. 1363–1375, 2004.

[11] L. Bauer, M. Shafique, and J. Henkel, “Concepts, architec-
tures, and run-time systems for efficient and adaptive recon-
figurable processors”, in NASA/ESA 6th Conf. on Adaptive
Hardware and Systems (AHS), 2011, pp. 80–87.

[12] J. E. Carrillo and P. Chow, “The effect of reconfigurable
units in superscalar processors”, in Int’l Symp. on Field
Programmable Gate Arrays (FPGA), 2001, pp. 141–150.

[13] A. Jacobs, A. George, and G. Cieslewski, “Reconfigurable
fault tolerance: A framework for environmentally adaptive
fault mitigation in space”, in Int’l Conf. on Field Pro-
grammable Logic and Appl. (FPL), 2009, pp. 199–204.

[14] A. Avizienis et al., “Basic concepts and taxonomy of depend-
able and secure computing”, IEEE Trans. on Dep. and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[15] C. Stroud et al., “Built-in self-test of FPGA interconnect”, in
International Test Conference, 1998, pp. 404–411.

[16] E. Chmelar, “FPGA interconnect delay fault testing”, in IEEE
Int’l Test Conference, 2003, pp. 1239–1247.

[17] P. K. Lala, Self-Checking and Fault-Tolerant Digital Design.
Elsevier, 2001.

[18] F. L. Kastensmidt, L. Carro, and R. Reis, Fault-Tolerance
Techniques for SRAM-Based FPGAs. Springer, 2006.

[19] C. Hu and S. Zain, “NSEU mitigation in avionics applica-
tions”, Xilinx Application Note XAPP1073 v1.0, 2010.

[20] S. Velusamy et al., “Monitoring temperature in FPGA based
SoCs”, in Proc. IEEE International Conference on Computer
Design, 2005, pp. 634–637.

[21] M. Agarwal et al., “Circuit failure prediction and its applica-
tion to transistor aging”, in VLSI Test Symposium, 2007, pp.
277–286.

[22] S. Durand and C. Piguet, “FPGAs with self-repair capabili-
ties”, in ACM Int’l Workshop on FPGAs, 1994, pp. 1–6.

[23] E. Stott, P. Sedcole, and P. Cheung, “Fault tolerant methods
for reliability in FPGAs”, in Int’l Conference on Field Pro-
grammable Logic and Applications, 2008, pp. 415–420.

[24] J. Emmert et al., “Dynamic fault tolerance in FPGAs via
partial reconfiguration”, in IEEE Symp. on Field-Program.
Custom Computing Machines, 2000, pp. 165–174.

[25] S. Mitra et al., “Reconfigurable architecture for autonomous
self-repair”, IEEE Design & Test of Computers, vol. 21, no. 3,
pp. 228–240, 2004.

[26] F. Sironi et al., “Self-aware adaptation in FPGA-based sys-
tems”, in International Conference on Field Programmable
Logic and Applications, 2010, pp. 187–192.

[27] M. Tahoori, “Application-Dependent Testing of FPGAs”,
IEEE Trans. on VLSI, vol. 14, no. 9, pp. 1024–1033, 2006.

[28] C. Stroud, “Ch. 12.4 field programmable gate array testing”,
in VLSI Test Principles and Architectures, L. Wang, C. Wu,
and X. Wen, Eds. Morgan Kaufmann, 2006.

[29] A. Van De Goor, “Using march tests to test SRAMs”, IEEE
Design & Test of Computers, vol. 10, no. 1, pp. 8–14, 1993.

[30] K. Radecka, J. Rajski, and J. Tyszser, “Arithmetic Built-In
Self-Test for DSP Cores”, IEEE Trans. on CAD of ICs and
Systems, vol. 16, no. 11, pp. 1358–1369, 1997.

[31] W. K. Huang et al., “Testing configurable LUT-based
FPGA’s”, IEEE Trans. Very Large Scale Integr. Syst., vol. 6,
pp. 276–283, 1998.

[32] M. Renovell et al., “Testing the interconnect of RAM-based
FPGAs”, IEEE Design & Test of Computers, vol. 15, no. 1,
pp. 45–50, 1998.

[33] A. Friedman, “Easily Testable Iterative Systems”, IEEE
Trans. on Comp., vol. C-22, no. 12, pp. 1061–1064, 1973.

[34] M. Renovell et al., “Test pattern and test configuration
generation methodology for the logic of RAM-based FPGA”,
in Proc. Asian Test Symposium, 1997, pp. 254–259.

[35] C. Stroud et al., “Built-in self-test of logic blocks in FPGAs
(Finally, a free lunch: BIST without overhead!)”, in Proc.
VLSI Test Symposium, 1996, pp. 387–392.

[36] P. Sundararajan, S. Mcmillan, and S. A. Guccione, “Testing
FPGA devices using JBits”, in Military and Aerospace Ap-
plications of Programmable Devices and Techn., 2001.

[37] C. Stroud et al., “Built-in self-test of FPGA interconnect”, in
Proc. International Test Conference, 1998, pp. 404–411.

[38] X. Sun et al., “Novel technique for built-in self-test of FPGA
interconnects”, in International Test Conference, 2000, pp.
795–803.

[39] M. Tahoori and S. Mitra, “Application-independent testing
of FPGA interconnects”, IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 24, no. 11, pp. 1774–1783, 2005.

[40] V. Verma, S. Dutt, and V. Suthar, “Efficient On-line Testing of
FPGAs with Provable Diagnosabilities”, in Design Automa-
tion Conference (DAC), 2004, pp. 498–503.

[41] D. Milton, S. Dhingra, and C. E. Stroud, “Embedded proces-
sor based built-in self-test and diagnosis of logic and memory
resources in FPGAs”, in Int’l Conf. on Embedded Systems and
Applications (ESA), 2006, pp. 87–93.

[42] J. Emmert, C. Stroud, and M. Abramovici, “Online Fault Tol-
erance for FPGA Logic Blocks”, IEEE Trans. VLSI Systems,
vol. 15, no. 2, pp. 216–226, 2007.

[43] B. F. Dutton and C. E. Stroud, “Soft core embedded processor
based built-in self-test of FPGAs”, in Int’l Symp. on Defect
and Fault-Tol. in VLSI Systems, 2009, pp. 29–37.

[44] M. Abramovici, C. E. Stroud, and J. M. Emmert, “Online
BIST and BIST-Based Diagnosis of FPGA Logic Blocks”,
IEEE Trans. VLSI Systems, vol. 12, no. 12, pp. 1284–1294,
2004.

[45] M. Abramovici et al., “Using roving STARs for on-line
testing and diagnosis of FPGAs in fault-tolerant applications”,
in Int’l Test Conference, 1999, pp. 973–982.

[46] M. S. Abdelfattah et al., “Transparent structural online test
for reconfigurable systems”, in Proc. IEEE International On-
Line Test Symposium (IOLTS), 2012.

[47] M. Renovell, “SRAM-based FPGAs: a structural test ap-
proach”, in Brazilian Symposium on Integrated Circuit De-
sign, 1998, pp. 67–72.

[48] W. H. Kautz, “Testing for faults in combinational cellular
logic arrays”, in Symposium on Switching and Automata
Theory (SWAT), 1967, pp. 161–174.

[49] M. Psarakis, D. Gizopoulos, and A. Paschalis, “Test Genera-
tion and Fault Simulation for Cell Fault Model using Stuck-at
Fault Model based Test Tools”, Journal of Electronic Testing
(JETTA), vol. 13, pp. 315–319, 1998.

[50] S. Makar and E. McCluskey, “Functional tests for scan chain
latches”, in Int’l Test Conference, 1995, pp. 606–615.

[51] C. Beckhoff, D. Koch, and J. Torresen, “The Xilinx Design
Language (XDL): Tutorial and use cases”, in Int’l Workshop
on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), 2011, pp. 1–8.


