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Abstract—Pattern generation for embedded testing often con-
sists of a phase generating random patterns and a second phase
where deterministic patterns are applied. This paper presents a
method which optimizes the first phase significantly and increases
the defect coverage, while reducing the number of deterministic
patterns required in the second phase.

The method is based on the concept of pseudo-exhaustive
testing (PET), which was proposed as a method for fault model
independent testing with high defect coverage. As its test length
can grow exponentially with the circuit size, an application to
larger circuits is usually impractical.

In this paper, partial pseudo-exhaustive testing (P-PET) is
presented as a synthesis technique for multiple polynomial
feedback shift registers. It scales with actual technology and is
comparable with the usual pseudo-random (PR) pattern testing
regarding test costs and test application time. The advantages
with respect to the defect coverage, N-detectability for stuck-at
faults and the reduction of deterministic test lengths are shown
using state-of-the art industrial circuits.

Keywords—BIST, Pseudo-Exhaustive Testing, Defect Coverage,
N-Detect

I. INTRODUCTION

Nearly three decades ago, pseudo-exhaustive testing has
been proposed for increasing defect coverage without the
limitations of specialized fault models [1–14]. In pseudo-
exhaustive testing, each output function of a combinational
circuit is tested exhaustively. As in general a single output
depends on a subset of all primary inputs only, testing each
output function exhaustively needs much less patterns than
testing the circuit exhaustively.

For a primary output o of a combinational circuit C with the
inputs I and outputs O, a cone is defined as the minimal sub-
circuit containing all structural predecessors of o. The set ko
denotes all inputs connected to the output o, and its cardinality
|ko| is called the cone size.

A pseudo-exhaustive test set T for C is a set of test patterns
that includes an exhaustive test for each circuit cone. If the
cones are tested in succession, the test application time is

|T | =
∑
o∈O

2|ko| (1)

As some cones can be tested in parallel, the test time is
limited by

2w ≤ |T | ≤ |O| × 2w (2)

where w represents the largest cone size in the circuit.
The inequality above shows that the test set T increases

exponentially with w. Testing the complete circuit pseudo-
exhaustively is only practical if w does not exceed a certain
limit.

The reasons why pseudo-exhaustive testing has been pro-
posed were the limitations of fault models for reflecting
real defects and for obtaining high defect coverage. With
the advent of nano-electronic circuits and their problems of
robustness, numerous defect mechanisms and unpredictable
behavior, these reasons hold more than ever [15–18].

The reason why pseudo-exhaustive testing has not emerged
as the dominating test strategy was its limitations in scaling
for today’s circuits. The increasing size of the maximum cones
and the growing number of primary inputs and outputs made
PET unfeasible, and different techniques had to be applied.

The standard approach is mixed mode testing where first
pseudo-random patterns are applied, and afterwards deter-
ministic test patterns are used for undetected faults. Pseudo-
random testing can reach rather high defect coverage [19, 20]
unless the circuit contains random pattern resistant areas.

For deterministic pattern generation, the stuck-at fault model
is widely used for its simplicity, but it does not model the be-
havior of production defects completely [21]. Even achieving
100% stuck-at fault coverage does not guarantee the detection
of all defects in a chip [22], thereby limiting the achievable
defect coverage. The defect coverage can be enhanced by using
the N-detect approach [20], where each single stuck-at fault
is detected at least N times or the maximum number of times
that fault can be detected. However, the size of the required
deterministic test set grows significantly with the value N [23].

In this paper, we substitute the first phase of mixed-mode
test, the pseudo-random pattern generation phase, by a novel
scheme named partial pseudo-exhaustive test (P-PET). In P-
PET, instead of all the circuit cones, only cones up to a given
size MAXsize are tested pseudo-exhaustively. For the cones
larger than MAXsize, the generated test set is not guaranteed
to enumerate all of their input assignments, and behaves like
pseudo-random patterns.

This scheme is based on the observation that modern circuits
are well optimized for speed, and contain short paths. The
resulting reduction in cone sizes means that a significant
portion of the circuit can be tested pseudo-exhaustively. This
implies that compared to PR testing
• testing this portion of the circuit pseudo-exhaustively

results in a very high non-target fault coverage for the
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complete circuit.
• the pseudo-exhaustively tested part of the circuit offers

the highest possible N -detectability, which significantly
improves the overall defect coverage.

• a higher stuck-at fault coverage is achieved in the first
phase of the mixed mode test scheme.

• the insertion of test points may further improve the fault
coverage and defect coverage.

• the use of P-PET leads to a significantly lower number
of deterministic pattern required in the second phase to
reach a certain fault coverage.

The P-PET scheme consists of a synthesis algorithm for
computing multiple feedback polynomials of a limited degree,
a mapping for transforming the multiple scan chains problem
to the single scan chain problem, and a multi-polynomial
feedback shift register. The hardware of this register is di-
rectly taken from [24], and needs only negligible overhead
compared to standard approaches. The synthesis algorithm
for the multiple feedback polynomials is based on the theory
published in [4], where a single polynomial of unbounded
degree is computed for a single scan chain. Instead of this, we
use multiple polynomials of bounded degrees, each of which
covers a set of cones of a size ≤MAXsize. Dealing with all
the cones ≤MAXsize by a minimum number of polynomials
is reduced to a set covering problem.

The rest of this paper is organized as follows: After describ-
ing of state of the art in the next section, the P-PET principle
is presented in section III. Section IV explains the mapping of
multiple scan chains to a single one, section V describes the
used check for exhaustive enumeration, and the set covering
heuristic is presented in section VI. Experiments performed on
industrial circuits are discussed in section VII. We show and
quantify the benefits in terms of increased fault coverage, high
defect coverage, increased N-detectability, and the reduction
of the deterministic patterns additionally required.

II. PREVIOUS WORK AND STATE OF THE ART

A. Mixed-mode hardware schemes

Figure 1 shows the basic embedded test architecture using
multiple scan chains: Self Test Using MISR and Parallel Shift
register sequence generator (STUMPS).

The pattern generation is performed by a linear feedback
shift register (LFSR) connected to the scan chains. The LFSR

Fig. 1. Basic STUMPS Architecture.

implements a fixed feedback primitive polynomial of degree
g and enumerates all input vectors of length g. In general,
the pattern length 2g − 1 for this is not feasible, and only a
subsequence is applied during pseudo-random testing.
Due to linear dependencies, some faults may not be detected
by a single LFSR-sequence. By equipping the LFSR with
programmability [24], several primitive polynomials with dif-
ferent linear dependencies can be used while the hardware
overhead consists of some AND gates (fig. 2) and the mask
(hg−1, hg−2, ...h0).
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Fig. 2. Programmable LFSR [24].

The presented work adapts the programmable LFSR for
the generation of pseudo-exhaustive test patterns, where the
required primitive polynomials are calculated from the circuit
structure. These polynomials are stored in the ROM (fig. 1)
to update the programmable LFSR during pattern generation.
Hence, in comparison to standard approaches (e.g. PR testing),
the hardware overhead of the proposed P-PET is negligible and
consist of a few AND gates and a small ROM. The approach
is applicable for both embedded testing and for built-in self
testing.

B. Pseudo-exhaustive pattern generation

Finding a pseudo-exhaustive test set with minimal length
is known to be NP-complete [25]. However, several heuristics
and techniques have been proposed to generate test sets with
almost optimal sizes. Some of them include:
• Syndrome-driver counters [5].
• Constant-weight code based schemes [1].
• Hardware approaches like linear networks (XOR tree)

based on linear codes [6] and linear sums [8].
• Condensed LFSRs, either based on linear codes [2] or

cyclic codes [3].
• LFSR and shift register based schemes [4].
These schemes do not scale with today’s circuits as they

may produce test sets with extremely high pattern counts.

III. THE P-PET PRINCIPLE

An LFSR of length r and an exhaustive LFSR sequence
of length 2r − 1 are uniquely defined by a characteristic
polynomial or feedback polynomial p of degree r. Let I :=
{1, ..., n} denote the primary inputs of the combinational
circuit under test. For each output o, we identify its cone
ko = {i1, ...is} ⊆ I with the set of its primary inputs. If the
feedback polynomial is primitive, the LFSR cycles through
2r − 1 different states and generates 2r − 1 different patterns.
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We say, polynomial p tests cone ko, p ≺ ko, if the 2r − 1
different patterns cover all 2s − 1 different assignments of ko
except the all zero vector which will be applied separately. Let
Kc := {ko|o ∈ O ∧ |ko| ≤MAXsize} be the set of all cones
with MAXsize inputs at most. Our goal is to find a minimum
set P of polynomials of degree ≤ MAXsize, so that each
cone is tested by at least one polynomial:

∀ k ∈ Kc ∃ p ∈ P p ≺ k (3)

The search for P is organized in several steps:
1) Map the P-PET problem for multiple scan chains to the

P-PET problem for a single scan chain.
2) Implement an efficient procedure for checking p ≺ k.
3) Look for an efficient procedure to solve the NP-complete

set covering problem defined by (3).

IV. P-PET FOR MULTIPLE SCAN CHAINS

Assume the scan elements of the circuit under test are
organized into h scan chains, let the size of the largest scan
chain be t. These scan chains can be treated as one big scan
chain if the channel separation ti between the different scan
chains is at least t (fig. 3).

SSC

SC1

...

...

...

...

         SC1

         SC2

         SC3

         SC(h-1)

         SC(h)

t

SC1 SC2 SC3 SC(h)SC(h-1)

t1 ≥ t t2 ≥ t t3 ≥ t t(h-1) ≥ t

Fig. 3. Mapping of multiple scan chains

A carefully designed phase shifter [26] can be used to
achieve this goal. In figure 3, h scan chains are mapped into
a single scan chain SSC where two successive scan chains
SCi and SCi+1 are separated by ti. However, this cannot be
directly applied to multi-polynomial LFSRs as ti also depends
on the applied polynomial p. In this case, ti < t is possible,
and a relation as seen in figure 4 may occur.

The figure contains two overlapping scanchains and presents
two possible scenarios. First, if the inputs of a cone k1 are
mapped onto different positions in the unified scanchain, then
p ≺ k1 is possible and has to be checked. In the second
scenario, if some inputs of a cone (k2 in figure 4) are mapped
to the same positions in a virtual scan chain, these overlapping
inputs will never receive different values. Hence, we can
conclude without any further check that p ≺ k2 is not possible.

                    k1          k2

      k1     k2

SCi

SCi+1

tp

Fig. 4. Scan chain separation with and without conflict.

To distinguish the two cases, the position of each scan
element e ∈ SCi+1 in the virtual single scan chain is
computed by  i∑

j=1

tj + id(e)

 mod 2r − 1 (4)

where id(e) is the index of e in SCi+1.
From now on, we assume just a virtual single scan chain.

V. CHECKING FOR EXHAUSTIVE ENUMERATION

The naive check p ≺ k could be implemented by generating
the 2r − 1 different patterns of p and validating that the 2s

different assignments of k are generated. However, this is
extremely time consuming, and as this has to be done for
a large set of polynomials it is not feasible. However, a much
more efficient method is provided by Barzilai’s theorem:

Theorem (Barzliai et al. [4])
Let (aτ )τ≥0 be a shift register sequence generated by
a primitive feedback polynomial p of degree r. The set
T:=(a0, ..., ar−1), (a1, ..., ar), ...,(a2r−2, a0, ..., ar−2) is an
exhaustive enumeration of the assignment of (i1, ..., is), if the
remainder classes (Xi1 mod p), ..., (Xis mod p) over GF(2)
are linearly independent.

Figure 5 shows an example where an LFSR with feedback
polynomial p = x3 + x+ 1 is connected to a scan chain. The
polynomial is primitive and repeats the sequence after 23 − 1
cycles as highlighted in the figure.

To check if a cone k1 = {0, 3, 4}, marked in the figure,
receives every non zero sequence from p, the residue classes
are calculated.

(x0) mod (x3 + x+ 1) = (1)
(x3) mod (x3 + x+ 1) = (x+ 1)
(x4) mod (x3 + x+ 1) = (x2 + x)

As the three remainders are linearly independent, we have
p ≺ k1. This can be verified by using figure 5 and initializing
the LFSR to any random value. All unique 23 − 1 nonzero
sequences are applied at the desired positions after 11 cycles.

On the contrary, cone k2 = {0, 4, 5} fails the linear
independency check. Hence, the polynomial p does not cover
k2, which can easily be verified by using figure 5.

Barzilai’s theorem reduces the check of p ≺ k to s simple
polynomial divisions and a check for linear dependency.
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VI. SET COVERING HEURISTIC

Let Pk be the set of primitive polynomials of degree k, let
fp := {k ∈ Kc/p ≺ k} be the set of all cones tested by a
polynomial p. We want to find a set L ⊂ PMAXsize such that
Kc =

⋃
p∈L fp and |L| is minimum.

The search procedure has two phases:

A) Reduction of Kc by removing redundant cones.
B) Iterative construction of polynomials until the new

Kc is covered completely.

A. Reduction of the cone set

The bit sequence C, generated by an LFSR with polyno-
mial P (x) =

∑n
i=0 aix

i can be calculated by the following
recurrence relation:

ym+n = a0ym + a1ym+1 + ...+ an−1ym+n−1,m ≥ 0 (5)

For each subsequence c = c0, c1, ..., cn−1 in C, there is
a c′ = cn−1, c0, ..., cn−2 where c′ is a cyclic shift of c. This
implies that in a scan chain, the position of a cone is irrelevant
if the relative distances between the cone’s inputs remain
intact. Every displacement of this cone receives the same
sequence. Therefore, we assume without loss of generality that
the cones are shifted to the beginning of the scan chain, while
keeping the relative distance between their inputs, and for each
cone k = {i1, ..., is} we have i1 = 0.

If we have two cones ka, kb with ka ⊆ kb, we can remove
ka, as any enumeration of kb would also enumerate ka. From
now we assume that all redundant cones are removed from
Kc.

Example: Suppose Kc contains two cones k2 = {3, 7, 9}
and k3 = {12, 16, 18, 25}. By shifting the cones at the
beginning of the scan chain, the cones become: k2 = {0, 4, 6}
and k3 = {0, 4, 6, 13}. As k2 ⊂ k3 cone k2 is identified as
redundant and can be removed to get Koc with only one cone
k3.
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Fig. 5. LFSR sequence.

B. Iterative polynomial construction

Kc may still contain a large number of cones k, and
checking pairwise p ≺ k can be rather time consuming for all
primitive polynomials of a certain degree. Hence, we check
p ≺ k only for cones of MAXsize and get a set of possible
polynomials, each of them tests the largest number of big
cones. From this set of possible polynomials, we select a
polynomial which tests the largest subset of all smaller cones.
The complete algorithm is found in figure 6.

1) Let PP := φ
2) Kc := {k ∈ K | |k| ≤MAXsize}
3) Koc := {kb ∈ Kc| @ ka ∈ K kb $ ka}
4) MAX := MAXsize

5) Kd := {k ∈ Koc | |k| =MAX}, idx =MAX
6) If (Kd := φ) MAX =MAX − 1, goto step 5.
7) Pcnd := {∃p ∈ Pidx | p covers max cones of Kd}
8) If (Pcnd := φ), idx = idx+ 1, goto step 7.
9) Ks := Koc −Kd

10) Find ps ∈ Pcnd that covers max cones from Ks , add ps
to PP .

11) Koc := Koc − {k ∈ Kc | (ps ≺ k)}
12) Kd := Kd − {k ∈ Kd | (ps ≺ k)}, Pcnd := Pcnd − ps
13) If (Kd 6= φ) AND (Pcnd 6= φ) goto step 9
14) If (Koc 6= φ) goto step 4.
15) Return PP .

Fig. 6. Algorithm: Calculate Covering Primitive Polynomials

The variable MAX is initialized to MAXsize and repre-
sents the largest cone size in Koc. The set Kd is a subset of
Koc and contains cones of exactly the size MAX . If Kd is
empty, MAX is decreased by one, and step 5 is repeated.
A set of primitive polynomials of size idx (Pcnd) is found
that covers a maximum number of cones from Kd. This set
contains the solution candidates of the current iteration. As
|Kd| � |Kc|, only a few cones are checked against Pidx to
get Pcnd, where |Pcnd| � |Pidx|. This step immensely reduces
the runtime of the algorithm and makes it scalable with the
circuit size.

The set Ks contains the cones from Koc which are not
in Kd. The polynomial ps ∈ Pcnd that covers a maximum
number of cones from Ks is the solution of the current
iteration. The selected polynomial (ps) is then added to the
final solution set PP. The cones which are covered by ps are
removed from Koc and Kd. If Kd is not empty and there
are still candidate polynomials in Pcnd, we go to step 9. The
algorithm continues unless Koc is empty.

The final result is a set PP containing selected primitive
polynomials that covers all the cones up to the given size
MAXsize.
Every polynomial in PP is used as an LFSR feedback function
and all possible unique patterns per polynomial are applied.
The all zero pattern is applied separately. The number of
patterns to be applied are calculated by using the following
equation:
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∑
i∈PP

2PDi − |PP |+ 1 + t (6)

where PDi is the degree of the polynomial and the 1
represents all zero pattern.

VII. EXPERIMENTAL RESULTS

The experiments show the advantages of P-PET with and
without circuit modification by test point insertion. The exper-
iments are performed in two major parts. First, the advantages
of P-PET are proven experimentally, while the second part
evaluates the additional achievable gain if circuit modifications
are possible. All experiments were conducted on full scan
circuits kindly provided by NXP.

A. Partial Pseudo-exhaustive Testing

1) Analysis: P The cone distribution of a circuit determines
the portion being P-PET testable. Figure 7 shows this distri-
bution for p239k. In both graphs, the x-axis presents cones up
to the size 32. For example, “<= 16” represents all cones up
to the size 16. The largest cone contained by this circuit is of
size 442. The y-axis in figure 7(a) represents the percentage
of the cones covered. Figure 7(b) plots the percentage of gates
covered by the cones up to a given size.

The results show that the majority of the cones is relatively
small. More than half of the cones in the circuit p239k are of
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Fig. 7. p239k: Achievable coverage by P-PET.

size 10 or smaller. This percentage of covered cones increases
to almost 85% if cones up to a size of 22 are allowed.

The portion of the circuit covered by these cones in terms
of gates is presented in figure 7(b). It can be seen that the
cones of limited sizes cover a significant portion of the circuit.
Considering cones up to the size of 22 covers more than 60%
of the circuit gates.

The maximum covered cone size (MAXsize) is user de-
fined, circuit dependent and test time dependent. Analyzing
the cone and gate coverages of the examined circuits showed
an optimal trade-off between coverage and test time at 24,
which will be used in all following experiments.

Table I presents the statistics of the considered industrial
circuits. The first three columns show name, number of inputs
and output (primary+pseudo-primary) of the circuits.

The name of the circuit roughly reflects the number of logic
gates. The fourth column represents the percentages of the
cones up to a size of 24, while the percentages of the gates
that are covered by these cones are given in the last column.

Circuit #(PI+PPI) #(PO+PPO) Cones (%) Gates(%)
p35k 2912 2229 74.07 38.54
p45k 3739 2550 57.28 55.26
p89k 4632 4557 64.18 30.54
p100k 5902 5829 82.75 49.76
p141k 11290 10502 45.05 34.54
p239k 18692 18495 83.91 62.41
p259k 18713 18495 83.25 65.84
p279k 18074 17827 58.98 52.16
p378k 15732 17420 68.65 82.54
p418k 30430 29809 58.42 48.04
p483k 33264 32610 85.48 60.08
p533k 33373 32610 83.68 66.66

TABLE I
CONE AND GATE COVERAGE (MAXsize = 24)

For the majority of the circuits, more than 60% of the
cones have a maximum size of 24. For some circuits, this
percentage is even beyond 80%. The last column shows that
these relatively small cones correspond to almost half of the
circuit.

2) Stuck-At Fault Coverage and N-Detectability: By using
the proposed synthesis scheme, we calculated the required
primitive polynomials for different circuits. The calculation is
performed by using a single core of a 64-bit machine running
at 2.4Ghz with 4GB RAM. Table II reports these results. The
second column shows the number and degrees of the required
polynomials. The third column presents the number of patterns
generated from these polynomials and are calculated by using
the equation 6. The time (in minutes) needed to calculate
the required polynomials is shown in the last column. The
numbers indicates the efficiency of the proposed heuristic,
which can easily be adapted to take advantage of multi-core
processors architectures to further reduce the calculation time.

For example circuit, p45k requires 1 primitive polynomial
of degree 24. The circuit p35k does not have any cone between
the size 17 and 24, the largest primitive polynomial required
is of degree 16.
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Circuit Req-Poly #Patterns Time(Min)
p35k 1× 216 + 2× 211 72544 8
p45k 1× 224 16780955 4
p89k 1× 224 + 1× 223 25170455 7
p100k 2× 224 3356033 10
p141k 2× 224 + 2× 223 50342935 123
p239k 3× 224 + 1× 223 58738945 56
p259k 3× 224 50350359 178
p279k 6× 224 100681365 32
p378k 8× 224 134233453 1418
p418k 5× 224 83916506 115
p483k 5× 224 + 1× 223 92307947 325
p533k 8× 224 134251094 872

TABLE II
REQUIRED PRIMITIVE POLYNOMIALS AND PATTERN COUNT.

Firstly, experiments are performed to compare P-PET with
PR testing while considering the single stuck-at fault model.
For both the cases, we apply the same number of test patterns
as reported in table II. For PR we used a single primitive poly-
nomial of degree 128. A higher degree was chosen to make
the comparison realistic, as usually a primitive polynomial of
a degree higher than 24 is used for PR testing. The results
are presented in table III where the column “Faults” shows
the total number of stuck-at faults. The number of undetected
faults for P-PET and PR cases are reported under the columns
“PPET” and “PR” respectively. The difference between the
two approaches is calculated by using the equation

PR− PPET
PR

× 100 (7)

and shows the percentage of extra faults which are detected
by P-PET as compared to PR case. The column “Dif” reports
these results. For all the circuits, P-PET shows better results
than PR in detecting hard pseudo-random resistive faults.
This gives P-PET a significant benefit in the second half of
mixed-mode testing where much less deterministic patterns are
required as compared to PR case. Circuit p378k is an exception
as it does not have any pseudo-random resistive fault.

Undetected Faults
Design Faults PR PPET Dif(%)
p35k 67988 27487 25476 7.32
p45k 71848 288 189 34.38
p89k 155794 14153 12745 9.95
p100k 166960 822 654 20.44
p141k 287552 9816 6735 31.39
p239k 455992 7180 5551 22.69
p259k 607536 10476 6024 42.50
p279k 493744 24690 19225 22.13
p378k 816274 0 0 0
p418k 688808 44536 40184 9.78
p483k 903348 22646 17669 21.97
p533k 1148846 23859 19376 18.79

TABLE III
SINGLE STUCK AT FAULT COVERAGE.

In the second set of experiments, N -detect is used as a
defect coverage metric to evaluate the effectiveness of both
the approaches. We keep the same experimental setup as in

the previous set of experiments except that instead of a single
detect, we target to detect a fault N = 15 times. The results
are reported in table IV.

Undetected (#Detect. < 15) Deterministic Patterns
Design PR PPET Dif(%) PR PPET Dif(%)
p35k 32626 30447 6.67 17005 16973 0.19
p45k 493 306 37.93 486 404 16.87
p89k 41113 34316 16.53 2791 2357 15.54
p100k 1246 922 26.00 688 592 13.95
p141k 35036 24145 31.08 2322 1985 14.51
p239k 9133 6181 32.33 1327 1037 21.85
p259k 35128 22968 34.61 1462 1294 11.61
p279k 53955 41245 23.55 7785 4475 57.48
p378k 23467 11628 50.44 638 397 37.77
p418k 62438 52661 15.65 2611 2172 16.81
p483k 43350 29811 31.23 1485 1018 31.44
p533k 48464 33317 31.25 1459 1193 18.23

TABLE IV
STUCK-AT FAULT COVERAGE TARGETING 15-DETECT.

In the first half of the table, the faults which are either un-
detected or detected less than 15 times are reported for both
PR and P-PET cases. The percentage of extra faults which are
detected by P-PET as compared to PR are calculated by using
equation 7 and are presented in the column “Dif”.

The numbers show the effectiveness of the proposed P-PET
patterns during N-detection. For every circuit, as compared
with PR testing, it detects a significant number of extra faults
which fulfills the criteria of 15-detect.

This is clearly visible in the case of circuit p378k. As
reported in table III, this circuit does not have any pseudo-
random resistive faults and in both test cases, all the faults
are detected. However, the superiority of P-PET test patterns
is evident when the two test sets are evaluated for achievable
defect coverages. The N-detect coverage of PR testing is much
lower than with P-PET patterns, and the proposed approach
detects more than 50% extra faults. These results indicate
the fact that the P-PET testing not only gives advantages
in detecting pseudo-random resistive faults, but is also more
effective in N-detect and achieves a high defect coverage.

Deterministic patterns were calculated which target the
undetected faults in table IV by using a commercial tool. They
too are reported for both the cases in table IV. The columns
“PR” and “PPET” show the required number of deterministic
patterns. The column “Dif” represents the difference (in per-
cent) between the two approaches. The high N-detectability
of P-PET implies that it needs significantly less deterministic
patterns as compared to PR testing, and requires 0.19% to 57%
less storage.

As explained before, both approaches are comparable in
terms of applying the deterministic patterns. Hence, with both
schemes, the deterministic patterns can be applied efficiently
by using compression schemes (e.g [27, 28]). However, due
to lower pattern counts, significant savings in pattern storage
are achieved for the P-PET case.

3) Non-Target Faults: The quality of test sets in terms of
defect coverage is further evaluated by their effect on surrogate
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(non-target) faults.
The experimental setup used previously for single stuck-at
faults (table III) is retained except for the fault model. We
consider four-way byzantine bridging faults as surrogate and
randomly inject 40,000 faults per circuit. Their fault coverage
is taken as an indicator of the un-modeled defect coverage
achieved. The results are reported in table V where the
columns 2 and 3 present the number of undetected bridging
faults for P-PET and PR testing. In the last column, the
percentage of the faults detected additionally by P-PET are
reported.

Un-Detected Brig faults
Circuit PR PPET Dif(%)
p35k 17743 15196 14.35
p45k 966 271 71.95
p89k 4025 1613 59.93
p100k 360 222 38.33
p141k 934 380 59.31
p239k 381 197 48.29
p259k 416 225 45.91
p279k 381 174 54.33
p378k 601 141 76.54
p418k 925 333 64.00
p483k 634 312 50.79
p533k 1099 667 39.31

TABLE V
P-PET: NON-TARGETED BRIDGING FAULTS COVERAGE.

The P-PET test detects all bridging faults inside an exhaus-
tively tested cone, however, bridges between two cones may
not be detected. For these inter-cones bridges, it behaves like
pseudo-random patterns. Compared to the application of PR
patterns, this increased circuit and gate coverage achieved by
P-PET significantly improves the non-target fault coverage and
thereby the defect coverage. For almost all the circuits (except
p35k), P-PET detects more than 38% extra faults and reaches
76% for p378k. These results support the previous findings
of N-detectability (table IV). As the proposed approach is
more effective in detecting hard faults multiple times, it detects
significantly more non-target faults.

B. Pseudo-Exhaustive Testing With Circuit Modification

When the circuit is tested pseudo-randomly, often not all of
the faults are detected. One standard approach is the use of
test points to improve the controllability and observability in
a circuit [29, 30]. It is a part of the standard flow, which is
used by the industry and supported by major industrial tools.

Test points insertion for pseudo-exhaustive (PE) testing has
been studied thoroughly [7, 10, 31]. By using test points, all of
the larger cones are reduced to at most predefined maximum
size, and the complete circuit is made pseudo-exhaustively
testable.

We conducted experiments to investigate the impact of test
point insertion on the defect coverage for both P-PET and PR
testing.

For these experiments, reported in table VI, we first insert
test points for PET by setting the maximum allowed cone size

to 24. Thereby it is guaranteed, that the modified circuit does
not contain cones larger than size 24. The same amount of test
points are inserted for PR case and are reported in column
“#tp”. Using the proposed algorithm, the required multiple
primitive polynomials are found for the modified PE testable
circuit. The number and degrees of the required polynomials
are shown in column “Req-poly”, while the fourth column
presents the corresponding number of patterns. The bridging
fault lists of the previous experiments (table V) are again used
as surrogate faults.

In a PET modified circuit, every cone is tested pseudo-
exhaustively. The pseudo-random test points insertion in-
creases the controllability and observability of the circuit but
the basic property of PR testing holds and detection of all
the non-target faults still remains fortuitous. These facts are
reflected in the results presented in table VI. For example
circuit p279k, the table V reports the difference between
P-PET and PR testing as 54%. When the test points are
inserted for pseudo-exhaustive and pseudo-random testing, the
difference increases to 76% (table VI).

#Undet Brig faults
Circuit #tp Req-poly #Patterns PR PPET Dif(%)
p35k 756 5× 224 83888988 573 121 78,88
p45k 308 3× 224 50335385 566 152 73.14
p89k 2167 7× 224 117445138 251 49 80.48
p100k 1646 5× 224 83891978 236 49 79.24
p141k 2473 6× 224 100674581 215 74 65.58
p239k 3670 7× 224 117459198 194 96 50.52
p259k 4007 8× 224 134236434 220 101 54.09
p279k 4662 7× 224 117458580 125 29 76.80
p378k 1820 8× 224 134233453 534 85 84.08
p418k 4581 9× 224 151028200 378 112 70.37
p483k 6887 9× 224 151025366 402 60 85.07
p533k 7463 11× 224 184582739 414 89 78.50

TABLE VI
REQUIRED POLYNOMIALS AND NON-TARGETED BRIDGING FAULTS

COVERAGE WITH TEST POINTS INSERTION.

This is true for all the circuits and shows that the insertion of
test points for pseudo-exhaustive testing has greater impact on
non-target faults and defect coverage than doing it for pseudo-
random case.

VIII. CONCLUSION

We introduced a new approach called partial pseudo-
exhaustive test (P-PET), where cones up to a given size are
tested pseudo-exhaustively. A synthesis technique for multiple
polynomial feedback shift registers is presented which scales
with actual technology and is comparable with the usual
pseudo-random pattern testing regarding test costs and test
application time.

With state-of-the art industrial circuits, we showed and
quantified the advantages of the proposed scheme. The defect
coverage was evaluated by using non-target fault and N-
detectability metrics and the results show the substancial
advantages achieved by P-PET. We also showed that the use
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of P-PET results in a major reduction in the number of
deterministic pattern required to reach a certain fault coverage.

The defect coverage can be further improved if circuit
modifications are possible. We showed that the insertion of
pseudo-exhaustive test points yields in significant benefits if
compared to circuit modifications for the pseudo-random case.
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