
Efficient Simulation of Structural Faults for the
Reliability Evaluation at System-Level

Michael A. Kochte, Christian G. Zoellin, Rafal Baranowski,
Michael E. Imhof, Hans-Joachim Wunderlich

University of Stuttgart
Institute of Computer Architecture and Computer Engineering

Pfaffenwaldring 47
D-70569 Stuttgart, Germany

Nadereh Hatami, Stefano Di Carlo,
Paolo Prinetto

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24
I-10129 Torino TO, Italy

Abstract—In recent technology nodes, reliability is considered
a part of the standard design flow at all levels of embedded
system design. While techniques that use only low-level models
at gate- and register transfer-level offer high accuracy, they are
too inefficient to consider the overall application of the embedded
system. Multi-level models with high abstraction are essential to
efficiently evaluate the impact of physical defects on the system.
This paper provides a methodology that leverages state-of-the-
art techniques for efficient fault simulation of structural faults
together with transaction-level modeling. This way it is possible
to accurately evaluate the impact of the faults on the entire
hardware/software system. A case study of a system consisting
of hardware and software for image compression and data
encryption is presented and the method is compared to a standard
gate/RT mixed-level approach.

Index Terms—Fault simulation, multi-level, transaction-level
modeling

I. INTRODUCTION

Structural faults model the consequences of physical defects
at the gate- and logic-level. The variability and defect mech-
anisms in nano-scale CMOS are complex [1] and require that
structural faults of VLSI circuits are considered also during
functional operation [2]. The impact of faults can even depend
on the application scenario [3, 4], which occupy and utilize
the hardware differently.

Only a subset of the errors observed at logic-level lead
to failures at system-level [5], but those that do must be
accurately analyzed. The analysis of this interaction at early
design stages gives important feedback for reliable [6, 7] and
secure systems [8]. Usually, it is not feasible to run gate-
level simulation of a complex design either for its size or
model availability. Instead, multi-level simulation techniques
are used. These techniques use models at different abstraction
levels: models with high accuracy for the fault injection
and highly abstract models for the evaluation of the conse-
quences [5]. Only errors observable at component boundaries
are propagated at a high abstraction level, without loss of
accuracy. This allows to retain the advantages of structural
modeling at much higher simulation speed.

Numerous approaches for the different abstraction levels
have been proposed, as for example:

• Multi-level simulation of switch-level and gate-level re-
presentations [9]

• Serial simulation of structural faults in mixed-level gate-
level/RTL models with event-based simulators [10, 11]

• Mixed-level fault-simulation of gate-level and RTL using
concurrent simulation [12, 13]

• Simulation of structural faults in mixed-level gate-
level/architectural-level simulations with symbolic sim-
ulation in the architecture-level model [14, 15]

• Serial fault injections performed at RT-level with error
propagation at system-level [5]

• Injection of structural faults into mixed gate-level/high-
level SystemC models [16]

• Mutator-based injection of faults into RTL and
transaction-level models [17]

The work presented here is the first approach that ef-
ficiently implements concurrent multi-level fault simulation
across gate- and transaction-level in an integrated simulation
environment. Our work is based on a structural fault model
with an efficient concurrent fault simulator at gate-level. The
effects of faults observable at gate-level boundaries are prop-
agated concurrently at transaction-level, allowing to evaluate
realistic faults at system-level. The used rollback mechanism
is simple to use with existing models and transaction-level
simulators.

The advantage of this approach is the combination of the
precision of gate-level simulation with the high simulation
speed of transaction-level models (TLM, [18]). By following
our methodology it is possible to analyze the effect of complex
applications on system reliability.

TLMs for design exploration are reused here for reliability
evaluation. The presented methodology can be used for explo-
ration early in the design flow since only gate-level models of
individual cores or components are required. This is often the
case in core-based design flows.

The remainder of the paper is structured as follows: Section
II describes shortly the modeling at transaction-level. Section
III presents the proposed methodology and the integration of
the gate-level sequential fault simulator within TLM. Section
IV discusses the concurrent transaction-level fault propagation
approach and its implementation. Finally, section V presents
two case studies and discusses the consequences of a system-
level reliability evaluation with the presented method.



II. TRANSACTION-LEVEL MODELING

Increased system complexity requires the move to higher
levels of abstraction in system modeling [19]. Transaction-
level models (TLMs) are used to facilitate simulation-driven
design space exploration and design verification [18] of large
hardware/software systems with simulation speed-ups of mul-
tiple orders of magnitude over gate- and RTL modeling.

The speed-up is achieved by abstracting from signal-
level communication to complex communication operations
as atomic transactions. This reduces the number of events
to be processed in event-driven simulators and the number
of context switches between simulation processes [20]. The
modularity and separation of communication and functionality
in TLMs allow to quickly explore different implementation
alternatives as is required in design exploration. Still, they
provide enough detail to make important design decisions
regarding performance, die area and power [21, 22].

In the TLM notion, functional units are modeled as modules
with a set of concurrent processes that represent their behavior.
These modules communicate by sending transactions through
abstract communication channels with well-defined interfaces.
The SystemC language and the TLM-2.0 standard [23] provide
the simulation kernel, common data types and interfaces re-
quired for transaction-level modeling of bus-based System on
Chip (SoC) platforms. Among others, the specified core inter-
faces comprise blocking and non-blocking transport interfaces
which are used to send transactions between communication
initiators, interconnect resources and targets.

Transaction-level modeling, e.g. with SystemC, allows to
model timing behavior with different granularities, from cycle-
accurate over approximately timed to untimed models [24].
The TLM-2.0 standard focuses on approximately timed models
and distinguishes loosely and approximately timed models.

III. MULTI-LEVEL SYSTEM MODEL FOR FAULT
SIMULATION

This section describes how the models at the different
abstractions levels are integrated into a single simulation en-
vironment. First, the impact of the TLM style on the accuracy
of the fault injection campaign is discussed. The section then
deals with the wrappers that translate transactions between
the different abstraction levels and include gate-level fault
simulators.

The multi-level fault simulation method proposed in this
work combines the accuracy of gate-level fault simulation
and the simulation speed of behavioral models. A transaction-
level model of the system is augmented by precise gate-level
models of components which are subject to fault injection.
Fault simulation of a gate-level model determines which faults
cause errors at the outputs of that model. For the subset of
observable faults, functional error propagation is performed
at transaction-level. The propagated error is then evaluated at
system-level and it is determined whether the fault eventually
results in a system failure, i.e., an error observable in the
application. Here, the classification from [25] is used:

• Benign error or recoverable error
• Silent data corruption (SDC)
• Detected unrecoverable error
The fault injection used in this work is based on a mutation

model for TLM [17]. Instead of random mutations, it accu-

rately reflects the effects of structural faults on transactions
issued to and from the the component subject to fault injection.
The following mutations are used:

• Corruption of a parameter such as address, payload,
transaction state or delay.

• A transaction falsely issued by the fault-simulated com-
ponent.

• A transaction deadlock in the fault-simulated component.
Fig. 1 depicts the flow of the proposed approach. The system

and the target application are modeled at transaction-level. For
the hardware blocks and cores to be investigated, gate-level
fault simulator instances are created using gate-level models.

B
e

h
a

v
io

ra
l 
D

o
m

a
in

S
tr

u
c
tu

ra
l 
D

o
m

a
in

Transaction level model of application

Gate level model of circuit under test

Invocation of 

accurate fault 

simulation for 

structural model

..
.

Translation and 

propagation of 

observable fault 

effects to TLM

..
.

Simulation time

Determine 

application level 

observability of 

errors

f1

f2

fn

f1

f2

fn

Fig. 1. Conceptual overview of the proposed multi-level fault simulation

A wrapper is used to fill the abstraction gap between
the gate- and transaction-level (cf. figure 2). The wrapper
encapsulates the gate-level model and translates transactions
into the pin- and cycle-accurate protocol of the gate-level
component. It also includes the gate-level fault simulator and
requests fault propagation at transaction-level.

Gate Level Model

Trans-

action

P
ro

to
c
o

l 
A

d
a

p
ta

ti
o

n
/ 

T
L

M
 e

rr
o

r 
in

je
c
ti
o

n Fault Simulator

Fig. 2. Wrapper between system TLM and gate-level fault simulator

A. Transaction-Level Models
As TLMs of hardware and software modules are often

used in design space exploration, they can be reused for
fault simulation. In the proposed multi-level approach, only
the component subject to fault injection is required to have
a model at gate-level. Hence only a partial mapping of the
entire system is required and binding may be limited to the
components subject to fault injection. As a result, the approach
can be used early to evaluate mapping and binding decisions
and explore design alternatives w.r.t. reliability.

The timing accuracy of the transaction-level model can
range across several orders of magnitude and the designer
has great freedom in modeling the timing aspects. On the



other hand, RT- and gate-level models are usually at least
cycle accurate. Obviously, there may be structural faults that
can impact the temporal behavior of a sequential component
and for example lead to longer completion times of certain
operations. System failures due to such faults may be masked
in a loosely timed TLM. In order to increase accuracy for this
type of failure, adaptive timing accuracy [26] is used at least
in the direct surrounding of the component subject to fault
injection.

B. Wrapper for Gate-Level Models
The precision of gate-level models allows to model mul-

tiple aspects of a system that are usually not considered at
transaction-level, as for example multi-valued logic, multiple
clock phases and reset signals. In a gate-level component that
is subject to structural fault injection, these modeling aspects
may be visible at the component boundary: Some faults
affect buses and cause conflicts that should be considered at
transaction-level. Multiple clock phases that were previously
in a known relationship become undetermined and lead to race
conditions. And reset signals, due to their high fan-out, have
structural faults that result in any combination of uninitialized
latches or flip-flops that show up as unknowns at the gate-
level/TLM boundary.

The wrapper that encapsulates the gate-level model and
fault simulator is therefore responsible for both the protocol
translation between transaction- and gate-level, as well as
the aforementioned issues. The accurate protocol translation
from transactions to the pin and cycle accurate protocol
of the gate-level model is achieved by decomposing each
transaction, mapping complex values to binary values, and
providing additional control signals at gate-level which are
not explicitly represented at transaction-level (e.g. reset or
write-enable signals). The cycle and pin accurate values are
processed by the synchronous fault simulation of the gate-level
model, where in each simulation cycle a new data vector is
passed to the simulator. The result of the simulation of each
cycle is evaluated. If errors become observable at the gate-level
model boundary, propagation is conducted at transaction-level
as detailed in section IV, using a transaction derived from the
result of the fault simulation. Since unknown values cannot
easily be represented in a regular TLM, the wrapper replaces
them by random values or by values for the worst or best
case, depending on whether a pessimistic or optimistic bound
of system reliability is to be evaluated. The exact strategy
depends on the function of the given component.

During the gate-level fault simulation a large degree of
parallelism can be exploited by efficient evaluation of faults,
patterns and gates in parallel [27]. Here, the concurrent fault
simulation algorithm [28] is used to achieve high efficiency by
simulating several faults in parallel such that gains are obtained
by common sensitization criteria amongst faults.

IV. ERROR PROPAGATION AND EVALUATION IN TLM
The gate-level fault simulator determines the observability

of fault effects at the primary outputs of the gate-level model.
To determine if a fault has any undesirable impact on system
functionality, its effect (error) is propagated in the system and
evaluated within the application context. This section intro-
duces an efficient, parallel error propagation and evaluation
method at transaction-level.

A. Error injection mechanism
An error that is observable at the boundary between gate-

and transaction-level is injected in an atomic transaction and
further propagated and evaluated in transaction-level simu-
lation. The specific mutation of a transaction is determined
by the wrapper of the gate-level model whenever the gate-
level simulator requests fault propagation. To this end, an
existing wrapper from functional validation (testbench) is
reused and extended with means to determine mutations based
on information provided by the gate-level fault simulator.

In order to keep the simulation effort low and classify
faults quickly, initially just a subset of outputs at gate-level
is evaluated to determine the type of mutation. For instance,
if at a given time an output specifying data validity of the
corresponding port is deasserted in both the fault-free and
faulty machines, the data provided by the port does not
need to be verified and no fault propagation at transaction-
level follows. Fault propagation is also given up if the error
is certain to be masked by the bus protocol. For example,
error propagation is not requested if a fault affects only bus
address bits that are masked out by the bus masking bits. Such
faults are classified as benign already in the wrapper to avoid
superfluous error propagations.

B. Evaluation of system failure conditions
The functionality of a system is checked against its specifi-

cation in functional verification. A system failure is defined as
a deviation of the system operation from its specification. The
expected behavior included in test scenarios from functional
verification is reused in our fault simulation approach to
construct gate-level wrappers and to evaluate overall system
behavior. In a holistic model, which also includes the envi-
ronment (e.g. a stability controller within a vehicle), certain
system properties can be verified under faults.

If the component subject to fault simulation is self-testing or
self-checking [29], this mechanism is used for error detection
and fault classification. Similarly, assertions from functional
verification, which usually compose built-in model instrumen-
tation, are also reused. Assertions implement sanity checks to
find faulty states and control flow violations. At system-level
they check for instance out-of-bounds exceptions.

To speed up fault simulation, the transaction-level fault
propagation is halted as soon as there is enough information
for fault classification. In case of signal processing applica-
tions, a checksum is calculated from the output data stream.
The checksum is then evaluated and compared at intermediate
checkpoints.

C. Concurrent error propagation
In order to efficiently propagate a large number of errors

it is important to have an effective means of reverting to the
good machine state and undoing the changes made by the
propagation. In gate-level fault simulators, this is achieved by
keeping track of the changes on a stack or by using tags or
group IDs to identify data that differs from the good machine
state. However, this is not feasible in TLM simulation since the
models consist mostly of functional abstractions in the form
of host-compiled code. Besides code modification, existing
error injection approaches for TLM work with instrumentation
of the compiled simulation binary [30] or directly with the



TLM simulation kernel [31]. But with all these methods, one
simulator session can only be used for a single injection.

The error injection method proposed here is based on the
concept of concurrent fault simulation with one fault-free
machine and several faulty machines evaluated in parallel.
The fault-free machine is running as the main process. Faulty
machines are created quickly as sub-processes using operating
system facilities. Since processes are protected from each
other, the cost of a rollback amounts to terminating the child
process that executes the faulty machine. Besides its low cost
the approach is by principle also truly concurrent on host
computers with multiple cores.

The approach is easily implemented on top of any existing
transaction-level model. No changes to the simulation kernel
are necessary and intellectual property can be used as is. The
evaluation of system failure or success can be done entirely in
the faulty machine. Only for the fault classification mentioned
before, communication must be done between the good and
faulty machine processes. However, the classification is easily
enumerated and it can be communicated cheaply using the
process return value upon termination of the faulty machine
process.

D. Implementation

The multi-level fault simulation algorithm has been imple-
mented based on the sequential gate-level fault simulator Hope
[32] and the OSCI SystemC 2.2 and TLM-2.0 libraries.

To allow for the integration into the object oriented SystemC
simulation environment, a C++ wrapper is implemented for
the Hope fault simulator. In the Hope wrapper, relevant data
structures and methods were exposed to obtain fault detection
information and methods were added to initiate error propa-
gation for faults visible at the gate-level boundary. Separate
instances of the Hope fault simulator are dynamically created
for the considered gate-level models. While the algorithmic
optimizations in Hope target the stuck-at fault model, they can
be extended to other structural fault models using the concept
of conditional stuck-at faults [33].

Figure 3 shows the interaction between the core wrapper,
the Hope fault simulator instance and the faulty machine
at transaction-level. The gate-level fault simulator is part of
the good machine and faulty TLM machines are created as
necessary using the POSIX fork() command. This allows to
quickly create a faulty machine since Unix implements process
forks with copy on write. Consequently, fault-free and faulty
machine share the same memory regions until a memory page
is modified in the faulty machine. Overall, the mechanism is
transparent for many system models, but some care must be
taken for file handles opened for writing in the simulation
environment and the file handles should be closed in faulty
machines.

V. EVALUATION

The evaluation of the proposed multi-level fault simulation
method concentrates on the fault classification accuracy and
performance for two applications executed on an AMBA based
SoC with a LEON3 processor. The SoC contains hardware
accelerator cores for Triple-DES (Data Encryption Standard)
as well as for two-dimensional discrete cosine transformation
(2D-DCT) (cf fig. 4).

Hope

Fault Simulator
Component

Wrapper
Faulty 

Machines

Clock

Step

fork()

Fault 

Simulation

Request

Propagation

Corrupt

Transaction

exit(result)

system call

system call

...

...

Fig. 3. Steps in Multi-Level Fault Simulation

Except for the validation, the experiments were run on a
multiprocessor system with 8 Intel Xeon CPUs (2.67 GHz)
and 48 GB of RAM. The memory usage did not exceed 250
MB in any of the experiments.

AHB 

Controller
CPU (Leon3)

Memory 

Controller

SRAMROM
3DES 2D-DCT

AHB-APB 

Bridge

AMBA AHB

AMBA APB

Fig. 4. SoC with Triple-DES and DCT accelerators

A. Validation
The proposed approach is validated in a traditional fault

injection environment based on a state-of-the-art commercial
simulator. The SoC is modeled at RT-level, except for the core
subject to fault injection which is modeled at gate-level.

In each simulation run a single stuck-at fault is evaluated.
The simulation is run until a result of the application is
produced. A time-out is set in order to detect faults that lead to
deadlocks and unacceptable delays. The simulation outcome
is evaluated by the fault injection environment and the fault
is classified accordingly. Due to the high computational cost,
a random sample of 3000 faults per core is investigated this
way.

Each fault is classified according to the categories from
section IV-B. In validation experiments the following cases
are discerned:

• Covered: The classification from the proposed method
agrees with the validation experiments,

• False corrupt: The fault causes an SDC in the proposed
method, but is benign in the validation experiments,

• False benign: The fault is benign in the proposed method,
but causes an SDC in the validation experiments.

As there is no error detection mechanism in the SoC, detected
unrecoverable errors do not occur (cf. section IV-B).



Validation experiments of the proposed method and the
reference simulator were conducted on a farm of workstations
equipped with AMD Athlon 64 Dual Core Processors (2.4
GHz) and 4 GB of RAM.

B. Triple-DES Encryption Application
The first case study is based on an encryption application

utilizing the Triple-DES core in the SoC from figure 4. It
encrypts a string of 64-bit words using a 64-bit key. The
software part of the application is responsible of the block-
wise transfer of data to the core and the read-back of results.
This application is chosen as an example that exhibits almost
no inherent masking.

The Triple-DES dedicated core has been obtained from
OpenCores1 and synthesized for the LSI10k generic library. It
contains 19,917 logic cells and 53,010 stuck-at faults. In the
following, we present the results for the system-level effects
of faults in the Triple-DES core obtained by the proposed
multi-level approach, and then we discuss its performance and
accuracy.

Table I presents system-level fault masking in four sce-
narios. The first column specifies the type and length of the
input data set that is encrypted. The encryption keys were
chosen randomly for each scenario. In the second column,
we give the number of sensitized faults, i.e., faults that
produce an observable change on the core boundaries but do
not necessarily lead to errors at system-level. The third and
fourth column provide the number of SDCs and benign errors,
respectively. In all scenarios more than 99% of faults that were
sensitized, led to an error on the system-level (SDC). This is
explained by the fact that the results from the core are directly
transferred to the system output, so no data error masking takes
place. The remaining 193 faults cause errors during inactivity
of the “data ready” signal and hence they are benign.

Scenario Faults Silent data Benign
sensitized corruptions errors

English 3.5 KB 32916 32723 193
Italian 21 KB 33247 33054 193
Italian 20 KB 32901 32708 193
Random 8 KB 32953 32760 193

TABLE I
FAULT MASKING IN TRIPLE-DES APPLICATION

Table II gives an insight into the performance of our ap-
proach on the 8-core machine. Column “Num. sim. contexts”
gives the number of fault propagations performed using fork.
The third and fourth column provide the CPU-time spent for
the concurrent fault simulator and for the execution of the
TLM model, respectively. The Hope CPU-time is on average
about four times longer than the execution of the TLM model.
The last column provides the overall run-time of our approach,
including the system CPU time for child process creation and
termination. As in our experiments the fault propagation effort
is low compared to the overhead of child-process creation
and termination, the contribution of the system CPU time in
the overall run-time was about half on average. This is still
more favorable than an explicit state roll-back mechanism in
a sequential fault simulator.

1http://www.opencores.org

Scenario Num. sim. Gate-level TLM Overall
contexts Hope CPU-time CPU-time run-time

English 3.5 KB 32253 1m 03s 0m 15s 4m 51s
Italian 21 KB 32584 4m 51s 1m 08s 9m 32s
Italian 20 KB 32238 4m 36s 1m 04s 9m 13s
Random 8 KB 32290 2m 01s 0m 29s 6m 06s

TABLE II
RUN-TIME RESULTS FOR TRIPLE-DES APPLICATION (IN MIN/SEC)

The validation was performed on a random sample of 3000
faults from the full set of 53,010 faults. A string of 3,576
ASCII characters was encoded using various keys. According
to the classification from section V-A, all the sampled faults
were categorized as “covered” by the proposed multi-level
method, i.e., no fault was mispredicted. The run-times are
summarized in table III. The first column lists the type of the
key used for encryption, and the subsequent columns provide
the comparison between the CPU time of the validation exper-
iments (RTL/gate) and the proposed approach (TLM/Hope),
both performed on the same Athlon machine. We achieved a
perfect match under an average speed-up of about 16,500x.

Scenario CPU-time CPU-time
RTL/gate TLM/Hope

All “0” 233h 47.5s
All “1” 243h 73.2s

Sequence 234h 40.1s
Random 242h 46.1s

TABLE III
VALIDATION RESULTS FOR TRIPLE-DES APPLICATION

(RANDOM SAMPLE OF 3,000 FAULTS)

C. JPEG Encoder Application
In case of the JPEG encoding application we study the

strong impact of error masking. The baseline JPEG encod-
ing algorithm can be decomposed into four steps: (1) color
transformation, (2) two-dimensional discrete cosine transform
(2D-DCT), (3) quantization, and (4) lossless compression. It
is performed by the SoC architecture from fig. 4. As the
2D-DCT is the most computationally expensive operation,
it is accelerated by the hardware core. All other operations
are performed by the LEON3 processor. The 2D-DCT core
has been obtained from OpenCores and synthesized for the
LSI10K library. It contains 28,001 logic cells and 78,914
stuck-at faults. In the following, we study the performance
and accuracy of our approach for several case studies with
various images.

The run-time results for our approach running on the
previously mentioned 8 core machine are gathered in table
IV. The first column specifies the type and dimensions of the
image that is encoded. The remaining columns are analogous
to table II. The number of simulation contexts depends on
the image size, as for each 8x8 pixel block the effects of all
sensitized faults that were not yet classified as SDC have to
be analyzed. Due to the masking property of JPEG, a large
number of error propagation occurs before the associated fault
is classified as SDC and can be dropped. Due to the fault
dropping, the run-time is not linear with the image size. For
the image composed of 48 pixel blocks, the run-time increases
just 7 times compared to the scenario with a single block.



Scenario Num. Sim. Gate-level TLM Overall
contexts Hope CPU-time CPU-time run-time

White 8x8 21813 1m 00s 0m 12s 2m 04s
Black 8x8 19728 1m 02s 0m 12s 2m 06s
Noise 8x8 44739 1m 07s 0m 16s 4m 55s

Fruits 64x48 275887 8m 17s 2m 03s 34m 49s

TABLE IV
RUN-TIME RESULTS FOR JPEG APPLICATION

The validation experiments were conducted in a setting
identical to the one used for Triple-DES. Due to high compu-
tational effort, validation was run for scenarios with a single
8x8 pixel image. The results are summarized in table V. It is
analogous to table III except for the two additional columns
that give the number of “benign faults” and the number of
faults categorized as “false corrupt” (cf. section V-A) among
the 3,000 faults in the sample. From 52% up to 82% of
sampled faults were found benign, what is attributed to the
error masking property of the JPEG quantization step. The
effects of 2 to 7 faults per scenario were mispredicted and
classified as “false corrupt”, which is pessimistic. They were
found to either result in a period of an unknown value on
the “data ready” signal while the signal should be inactive, or
generate additional active pulses on this signal after the data
becomes invalid. In the validation experiments, these faults
were classified as benign only due to the short length of the
application and favorable synchronization. Under unfavorable
circumstances they could in fact cause SDCs. However, even
if we assume the validation experiments to be the golden
reference, we achieve a match for 99.8% of faults under an
average speed-up of 15,400x.

Scenario Faults False CPU-time CPU-time
benign corrupt RTL/gate TLM/Hope

White 8x8 2377 6 115h 25.7s
Black 8x8 2463 7 117h 24.4s

Sequence 8x8 2067 2 119h 32.8s
Noise 8x8 1580 2 148h 33.8s

TABLE V
VALIDATION RESULTS FOR JPEG APPLICATION

(RANDOM SAMPLE OF 3,000 FAULTS)

VI. CONCLUSIONS

The presented fault simulation methodology allows to con-
sider structural faults in a multi-level simulation at gate-
level and transaction-level. Simulation time is improved by
four orders of magnitude by using an efficient concurrent
fault simulator at gate-level and concurrent error propagation
at transaction-level. The methodology and error propagation
mechanism allow to reuse TLM models from design space
exploration. The accuracy of precise gate-level simulations is
achieved.

ACKNOWLEDGMENT

This work has been supported by a Vigoni grant of the
German Academic Exchange Service (DAAD).

REFERENCES
[1] K. Roy, T. Mak, and K. Cheng, “Test consideration for nanometer-scale CMOS

circuits,” IEEE Design & Test of Computers, vol. 23, no. 2, pp. 128–136, 2006.
[2] S. Borkar, “Designing reliable systems from unreliable components: the challenges

of transistor variability and degradation,” IEEE MICRO, pp. 10–16, 2005.

[3] N. Wattanapongsakorn and S. P. Levitan, “Reliability optimization models for
embedded systems with multiple applications,” IEEE Transactions on Reliability,
vol. 53, no. 3, pp. 406–416, 2004.

[4] J. Cano and D. Rios, “Reliability forecasting in complex hardware/software sys-
tems,” in Proc. of the The First International Conference on Availability, Reliability
and Security (ARES), 2006, pp. 300–304.

[5] R. Leveugle, D. Cimonnet, and A. Ammari, “System-level dependability analysis
with RT-level fault injection accuracy,” in 19th IEEE International Symposium on
Defect and Fault-Tolerance in VLSI Systems (DFT), 2004, pp. 451–458.

[6] R. Leveugle and K. Hadjiat, “Multi-level fault injections in VHDL descriptions:
Alternative approaches and experiments,” J. Electronic Testing, vol. 19, no. 5, pp.
559–575, 2003.

[7] A. Jhumka, S. Klaus, and S. A. Huss, “A dependability-driven system-level design
approach for embedded systems,” in Design, Automation and Test in Europe
(DATE), 2005, pp. 372–377.

[8] K. Rothbart, U. Neffe, C. Steger, R. Weiss, E. Rieger, and A. Mühlberger, “High
level fault injection for attack simulation in smart cards,” in 13th Asian Test
Symposium (ATS), 2004, pp. 118–121.

[9] W. Meyer and R. Camposano, “Active timing multilevel fault-simulation with
switch-level accuracy,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 14, no. 10, pp. 1241–1256, 1995.

[10] M. B. Santos and J. P. Teixeira, “Defect-oriented mixed-level fault simulation of
digital systems-on-a-chip using HDL,” in Design, Automation and Test in Europe
(DATE), 1999, p. 549.

[11] Z. Navabi, S. Mirkhani, M. Lavasani, and F. Lombardi, “Using RT level component
descriptions for single stuck-at hierarchical fault simulation,” J. Electronic Testing,
vol. 20, no. 6, pp. 575–589, 2004.

[12] S. Gai, P. L. Montessoro, and F. Somenzi, “MOZART: a concurrent multilevel
simulator,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 7, no. 9,
pp. 1005–1016, 1988.

[13] K. P. Lentz and J. B. Homer, “Handling behavioral components in multi-level
concurrent fault simulation,” in Proc. 33th Annual Simulation Symposium (SS
2000), 2000, pp. 149–156.

[14] M. S. Hsiao and J. H. Patel, “A new architectural-level fault simulation using
propagation prediction of grouped fault-effects,” in International Conference on
Computer Design (ICCD), 1995, pp. 628–.

[15] O. Sinanoglu and A. Orailoglu, “RT-level fault simulation based on symbolic
propagation,” in 19th IEEE VLSI Test Symposium (VTS), 2001, pp. 240–245.

[16] S. Misera, H. T. Vierhaus, and A. Sieber, “Simulated fault injections and their ac-
celeration in SystemC,” Microprocessors and Microsystems - Embedded Hardware
Design, vol. 32, no. 5-6, pp. 270–278, 2008.

[17] G. Beltrame, C. Bolchini, and A. Miele, “Multi-level fault modeling for transaction-
level specifications,” in Proc. of the 19th ACM Great Lakes Symposium on VLSI,
2009, pp. 87–92.

[18] F. Ghenassia, Ed., Transaction-Level Modeling with SystemC - TLM Concepts and
Applications for Embedded Systems. Springer, 2005.

[19] A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski, and J. Teich, “Elec-
tronic system-level synthesis methodologies,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 28, no. 10, pp. 1517 –1530, oct. 2009.

[20] M. Radetzki, “Object-oriented transaction level modelling,” in Advances in Design
and Specification Languages for Embedded Systems, S. Huss, Ed. Springer, 2007.

[21] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable performance
estimation at the transaction level,” in Proc. Design, Automation and Test in
Europe (DATE), 2008, pp. 3–8.

[22] M. Cheema and O. Hammami, “Introducing Energy and Area Estimation
in HW/SW Design Flow Based on Transaction Level Modeling,” in Proc.
International Conference on Microelectronics (ICM), 2006, pp. 182–185.

[23] Open SystemC Initiative (OSCI) TLM Working Group, “Transaction level
modeling standard 2 (OSCI TLM 2),” June 2008, www.systemc.org.

[24] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in Proc.
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2003, pp. 19–24.

[25] S. S. Mukherjee, J. S. Emer, and S. K. Reinhardt, “The soft error problem: An
architectural perspective,” in 11th International Conference on High-Performance
Computer Architecture (HPCA-11 2005), 12-16 February 2005, San Francisco, CA,
USA, 2005, pp. 243–247.

[26] M. Radetzki and R. S. Khaligh, “Accuracy-adaptive simulation of transaction level
models,” in Design, Automation and Test in Europe (DATE), 2008, pp. 788–791.

[27] M. A. Kochte, M. Schaal, H.-J. Wunderlich, and C. G. Zoellin, “Efficient fault
simulation on many-core processors,” in Proc. ACM/IEEE Design Automation
Conference (DAC), 2010.

[28] E. Ulrich and T. Baker, “The concurrent simulation of nearly identical digital
networks,” in Proc. 10th Workshop on Design Automation, 1973, pp. 145–150.

[29] P. Lala, Self-checking and fault-tolerant digital design. Morgan Kaufmann, 2001.
[30] A. da Silva Farina and S. Prieto, “On the use of dynamic binary instrumentation

to perform faults injection in transaction level models,” in 4th International
Conference on Dependability of Computer Systems, 2009, pp. 237 –244.

[31] J. Na, “A novel simulation fault injection using electronic systems level simulation
models,” IEEE Design Test of Computers, no. Early Access Article, 2009.

[32] H. K. Lee and D. S. Ha, “Hope: An efficient parallel fault simulator for synchronous
sequential circuits,” in Proc. ACM/IEEE Design Automation Conference (DAC),
1992, pp. 336–340.

[33] H. Wunderlich and S. Holst, “Generalized fault modeling for logic diagnosis,” in
Models in Hardware Testing. Springer, 2009, pp. 133–155.


